Skip to main content

From the computer to the laboratory: materials discovery and design using first-principles calculations

Abstract

The development of new technological materials has historically been a difficult and time-consuming task. The traditional role of computation in materials design has been to better understand existing materials. However, an emerging paradigm for accelerated materials discovery is to design new compounds in silico using first-principles calculations, and then perform experiments on the computationally designed candidates. In this paper, we provide a review of ab initio computational materials design, focusing on instances in which a computational approach has been successfully applied to propose new materials of technological interest in the laboratory. Our examples include applications in renewable energy, electronic, magnetic and multiferroic materials, and catalysis, demonstrating that computationally guided materials design is a broadly applicable technique. We then discuss some of the common features and limitations of successful theoretical predictions across fields, examining the different ways in which first-principles calculations can guide the final experimental result. Finally, we present a future outlook in which we expect that new models of computational search, such as high-throughput studies, will play a greater role in guiding materials advancements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Eagar TW (1995) Technol Rev 98(2)

  2. 2.

    Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  3. 3.

    ABINIT. http://www.abinit.org/. Accessed 15 March 2012

  4. 4.

    Vienna Ab Initio Simulation Package (VASP). http://www.vasp.at/. Accessed 15 March 2012

  5. 5.

    Quantum Espresso. http://www.quantum-espresso.org/. Accessed 15 March 2012

  6. 6.

    Hafner J (2000) Acta Mater 48(1):71

    CAS  Article  Google Scholar 

  7. 7.

    Hafner J, Wolverton C, Ceder G (2006) MRS Bull 31(9):659

    Article  Google Scholar 

  8. 8.

    Martin RM (2004) In: Electronic structure: basic theory and practical methods, vol 1. Cambridge University Press, New York

    Book  Google Scholar 

  9. 9.

    Burke K (2003) The ABC of DFT. http://dft.uci.edu/sites/default/files/g1.pdf. Accessed 15 March 2012

  10. 10.

    Argaman N, Makov G (2000) Am J Phys 68(1):69

    CAS  Article  Google Scholar 

  11. 11.

    Carter EA (2008) Science 321(5890):800

    CAS  Article  Google Scholar 

  12. 12.

    Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  13. 13.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    CAS  Article  Google Scholar 

  14. 14.

    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691

    CAS  Article  Google Scholar 

  15. 15.

    Jonsson H, Mills G, Jacobsen KW (1998) In: Nudged elastic band method for finding minimum energy paths of transitions. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  16. 16.

    Mills G, Jónsson H (1994) Phys Rev Lett 72(7):1124

    CAS  Article  Google Scholar 

  17. 17.

    Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys: Condens Matter 9:767

    CAS  Article  Google Scholar 

  18. 18.

    Zhou F, Cococcioni M, Kang K, Ceder G (2004) Electrochem Commun 6:1144

    CAS  Article  Google Scholar 

  19. 19.

    Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105

    Article  CAS  Google Scholar 

  20. 20.

    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73(19):195107

    Article  CAS  Google Scholar 

  21. 21.

    Wang L, Maxisch T, Ceder G (2007) Chem Mater 19(3):543

    CAS  Article  Google Scholar 

  22. 22.

    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124(21):219906

    Article  CAS  Google Scholar 

  23. 23.

    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207

    CAS  Article  Google Scholar 

  24. 24.

    Heyd J, Scuseria GE (2004) J Chem Phys 121(3):1187

    CAS  Article  Google Scholar 

  25. 25.

    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Phys Rev B 82(7):075122

    Article  CAS  Google Scholar 

  26. 26.

    Wang C, Pickett W (1983) Phys Rev Lett 51(7):597

    CAS  Article  Google Scholar 

  27. 27.

    Sham L, Schlüter M (1983) Phys Rev Lett 51(20):1888

    Article  Google Scholar 

  28. 28.

    Cohen A, Mori-Sánchez P, Yang W (2008) Phys Rev B 77(11): 115123

    Google Scholar 

  29. 29.

    Chan M, Ceder G (2010) Phys Rev Lett 105(19):196403

    CAS  Article  Google Scholar 

  30. 30.

    Hedin L (1965) Phys Rev 139(3A):A796

    Article  Google Scholar 

  31. 31.

    Aryasetiawan F, Gunnarsson O (1998) Rep Progr Phys 61:237

    CAS  Article  Google Scholar 

  32. 32.

    Runge E, Gross EKU (1984) Phys Rev Lett 52(12):997

    CAS  Article  Google Scholar 

  33. 33.

    Tran F, Blaha P (2009) Phys Rev Lett 102(22):5

    Article  CAS  Google Scholar 

  34. 34.

    Kuisma M, Ojanen J, Enkovaara J, Rantala T (2010) Phys Rev B 82(11):1

    Article  CAS  Google Scholar 

  35. 35.

    Gritsenko O, van Leeuwen R, van Lenthe E, Baerends E (1995) Phys Rev A 51(3):1944

    CAS  Article  Google Scholar 

  36. 36.

    Maddox J (1998) Nature 335:201

    Google Scholar 

  37. 37.

    Schon JC, Doll K, Jansen M (2010) Phys Status Solidi (B) 247(1):23

    Article  CAS  Google Scholar 

  38. 38.

    Woodley SM, Catlow R (2008) Nat Mater 7(12):937

    CAS  Article  Google Scholar 

  39. 39.

    O’Keeffe M (2010) Phys Chem Chem Phys: PCCP 12: 8580. doi:10.1039/C004039H

  40. 40.

    Lany S (2008) Phys Rev B 78(24):1

    Article  CAS  Google Scholar 

  41. 41.

    Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) Comput Mater Sci 50:2295

    CAS  Article  Google Scholar 

  42. 42.

    Jain A, Hautier G, Ong SP, Moore C, Fischer CC, Ceder G (2011) Phys Rev B 84:045115

    Article  CAS  Google Scholar 

  43. 43.

    Hautier G, Ong SP, Jain A, Moore CJ, Ceder G (2012) Phys Rev B 85:155208. doi:10.1103/PhysRevB.85.155208

    Article  CAS  Google Scholar 

  44. 44.

    Oganov AR, Valle M (2009) J Chem Phys 130(10):104504

    Article  CAS  Google Scholar 

  45. 45.

    Ducastelle F (1991) In: Order and phase stability in alloys, (Cohesion and Structure) , vol 3. North Holland, Amsterdam

    Google Scholar 

  46. 46.

    Ceder G (1993) Comput Mater Sci 1(2):144

    CAS  Article  Google Scholar 

  47. 47.

    Sanati M, Wang L, Zunger A (2003) Phys Rev Lett 90(4):1

    Article  CAS  Google Scholar 

  48. 48.

    Blum V, Zunger A (2004) Phys Rev B 69(2):20103

    Article  CAS  Google Scholar 

  49. 49.

    Hart GLW (2009) Phys Rev B 80(1):1

    Google Scholar 

  50. 50.

    Van Der Ven A, Aydinol MK, Ceder G (1998) J Electrochem Soc 145(6):2149

    Article  Google Scholar 

  51. 51.

    Wales DJ, Doye JPK (1997) J Phys Chem A 101(28):5111

    CAS  Article  Google Scholar 

  52. 52.

    Wales DJ, Scheraga HA (1999) Science 285(5432):1368

    CAS  Article  Google Scholar 

  53. 53.

    Bush TS, Catlow CRA, Battle PD (1995) J Mater Chem 5(8):1269

    CAS  Article  Google Scholar 

  54. 54.

    Abraham NL, Probert MIJ (2006) Phys Rev B 73(22):1

    Article  CAS  Google Scholar 

  55. 55.

    Oganov AR, Glass CW (2006) J Chem Phys 124(24):244704

    Article  CAS  Google Scholar 

  56. 56.

    Trimarchi G, Zunger A (2007) Phys Rev B 75(10):1

    Article  CAS  Google Scholar 

  57. 57.

    Oganov AR, Glass CW (2006) J Phys: Condens Matter 20(6):064210

    Article  CAS  Google Scholar 

  58. 58.

    Zhang X, Zunger A, Trimarchi G (2010) J Chem Phys 133(19):194504

    Article  CAS  Google Scholar 

  59. 59.

    Oganov AR, Chen J, Gatti C, Ma Y, Ma Y, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Nature 457(February):863. doi:10.1038/nature07736

    CAS  Article  Google Scholar 

  60. 60.

    Kolmogorov A, Shah S, Margine E, Bialon A, Hammerschmidt T, Drautz R (2010) Phys Rev Lett 105(21):1

    Article  CAS  Google Scholar 

  61. 61.

    Ono S, Kikegawa T, Ohishi Y (2007) Am Miner 92(7):1246

    CAS  Article  Google Scholar 

  62. 62.

    Liebold-Ribeiro Y, Fischer D, Jansen M (2008) Angew Chem Int Ed 47(23):4428 (in English)

    CAS  Article  Google Scholar 

  63. 63.

    Johnson DC (2008) Nature 454( 7201):174

    CAS  Article  Google Scholar 

  64. 64.

    Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) MRS Bull 31(12):981

    CAS  Article  Google Scholar 

  65. 65.

    Curtarolo S, Morgan D, Persson K, Rodgers J, Ceder G (2003) Phys Rev Lett 91(13):1

    Article  CAS  Google Scholar 

  66. 66.

    Fischer CC, Tibbetts KJ, Morgan D, Ceder G (2006) Nat Mater 5(8):641

    CAS  Article  Google Scholar 

  67. 67.

    Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Inorg Chem 50:656

    CAS  Article  Google Scholar 

  68. 68.

    Kolmogorov AN, Curtarolo S (2006) Phys Rev B 74(22):1

    Article  CAS  Google Scholar 

  69. 69.

    Kolmogorov AN, Curtarolo S (2006) Phys Rev B 73(18):1

    Article  CAS  Google Scholar 

  70. 70.

    Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2009) J Am Chem Soc 29: 163

    Google Scholar 

  71. 71.

    Hautier G, Fischer CC, Jain A, Mueller T, Ceder G (2010) Chem Mater 22:3762

    CAS  Article  Google Scholar 

  72. 72.

    http://ceder.mit.edu/ternaryoxides. Accessed 15 March 2012

  73. 73.

    Fix T, Sahonta SL, Garcia V, MacManus-Driscoll JL, Blamire MG (2011) Cryst Growth Des 11 (5): 1422

    Google Scholar 

  74. 74.

    Uratani Y, Shishidou T, Oguchi T (2008) Jpn J Appl Phys 47(9):7735

    CAS  Article  Google Scholar 

  75. 75.

    Matar S, Baraille I, Subramanian M (2009) Chem Phys 355(1):43

    CAS  Article  Google Scholar 

  76. 76.

    http://han.ess.sunysb.edu/~USPEX/. Accessed 15 March 2012

  77. 77.

    http://www.maise-guide.org/. Accessed 15 March 2012

  78. 78.

    http://www.materialsproject.org/apps/structure_predictor. Accessed 15 March 2012

  79. 79.

    Wadia C, Alivisatos AP, Kammen DM (2009) Environ Sci Technol 43(6):2072

    CAS  Article  Google Scholar 

  80. 80.

    Wadia C, Albertus P, Srinivasan V (2011) J Power Sour 196(3):1593

    CAS  Article  Google Scholar 

  81. 81.

    Jaramillo P, Samaras C, Wakeley H, Meisterling K (2009) Energy Policy 37(7):2689

    Article  Google Scholar 

  82. 82.

    ISuppli IHS (2011) IHS iSuppli Rechargeable Battery Special Report. Tech. rep.

  83. 83.

    Aydinol M, Kohan A, Ceder G, Cho K, Joannopoulos J (1997) Phys Rev B 56(3):1354

    CAS  Article  Google Scholar 

  84. 84.

    Maxisch T, Zhou F, Ceder G (2006) Phys Rev B 73(10):1

    Article  CAS  Google Scholar 

  85. 85.

    Morgan D, Van Der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7(2):A30

    CAS  Article  Google Scholar 

  86. 86.

    Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 4:1

    Google Scholar 

  87. 87.

    Ceder G, Hautier G, Jain A, Ong S (2011) MRS Bull 36(03):185

    CAS  Google Scholar 

  88. 88.

    Meng YS, Arroyo-de Dompablo ME (2009) Energy Environ Sci 2(6):589

    CAS  Article  Google Scholar 

  89. 89.

    Ceder G (2010) MRS Bull 35(September):693. doi:10.1557/mrs2010.681

    CAS  Article  Google Scholar 

  90. 90.

    Ceder G, Chiang YM, Sadoway D, Aydinol M, Jang YI, Huang B (1998) Nature 392(6677):694

    CAS  Article  Google Scholar 

  91. 91.

    Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Science 311(5763):977

    CAS  Article  Google Scholar 

  92. 92.

    Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012, submitted)

  93. 93.

    Legagneur V (2001) Solid State Ion 139(1–2):37

    CAS  Article  Google Scholar 

  94. 94.

    Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) J Electrochem Soc 158(3):A309

    CAS  Article  Google Scholar 

  95. 95.

    Ceder G, Kim JC, Kang B, Moore CJ, Hautier G (2011) International Patent Application PCT/US2011/035432

  96. 96.

    Ceder G, Jain A, Hautier G, Kim JC, Kang BW (2010) US Patent Application 12/857262

  97. 97.

    Kuang Q, Xu J, Zhao Y, Chen X, Chen L (2011) Electrochim Acta 56(5):2201

    CAS  Article  Google Scholar 

  98. 98.

    Kuang Q, Lin Z, Zhao Y, Chen X, Chen L (2011) J Mater Chem 3:2

    Google Scholar 

  99. 99.

    Jain A, Hautier G, Moore CJ, Kang B, Lee J, Chen H, Twu N, Ceder G (2012) J Electrochem Soc 159(5):A622

    CAS  Article  Google Scholar 

  100. 100.

    Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) J Mater Chem 21:17147

    CAS  Article  Google Scholar 

  101. 101.

    Ceder G, Chen H, Doe RE, Hautier G, Jain A, Kang B (2011) International patent application pct/us2011/025684

  102. 102.

    Crabtree GW, Dresselhaus MS (2008) MRS Bull 33(4):421

    CAS  Article  Google Scholar 

  103. 103.

    Wolverton C, Siegel DJ, Akbarzadeh aR, Ozoliš V (2008) J Phys: Condens Matter 20(6):064228

    CAS  Article  Google Scholar 

  104. 104.

    Ozolins V, Akbarzadeh aR, Gunaydin H, Michel K, Wolverton C, Majzoub EH (2009) J Phys: Conf Ser 180:012076

    Article  CAS  Google Scholar 

  105. 105.

    Alapati SV, Johnson JK, Sholl DS (2006) J Phys Chem B 110(17):8769

    CAS  Article  Google Scholar 

  106. 106.

    Lu J, Fang Z, Choi Y, Sohn H (2007) J Phys Chem C 111(32):12129

    CAS  Article  Google Scholar 

  107. 107.

    Luo W (2004) J Alloys Compd 381(1–2):284

    CAS  Article  Google Scholar 

  108. 108.

    Osborn W, Markmaitree T, Shaw LL (2007) J Power Sour 172(1):376

    CAS  Article  Google Scholar 

  109. 109.

    Liu Y, Zhong K, Gao M, Wang J, Pan H, Wang Q (2008) System 2(6):3521

    Google Scholar 

  110. 110.

    Lu J, Choi YJ, Fang ZZ, Sohn HY (2010) J Power Sour 195(7):1992

    CAS  Article  Google Scholar 

  111. 111.

    Tritt TM, Böttner H, Chen L (2008) MRS Bull 33(4):366

    CAS  Article  Google Scholar 

  112. 112.

    Tritt T, Subramanian M (2006) MRS Bull 31(03):188

    Article  Google Scholar 

  113. 113.

    Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Caillat T (2003) Int Mater Rev 48(1):45

    CAS  Article  Google Scholar 

  114. 114.

    Madsen GKH(2006) J Am Chem Soc 128(37):12140

    CAS  Article  Google Scholar 

  115. 115.

    Bergerhoff G, Hundt R, Sievers R, Brown I (1983) J Chem Inf Comput Sci 23(2):66

    CAS  Google Scholar 

  116. 116.

    Inorganic Crystal Structure Database. http://www.fiz-karlsruhe.de/icsd.html. Accessed 15 March 2012

  117. 117.

    Toberer ES, May AF, Scanlon CJ, Snyder GJ (2009) J Appl Phys 105(6):063701

    Article  CAS  Google Scholar 

  118. 118.

    Van De Walle CG, Neugebauer J (2004) J Appl Phys 95(8):3851

    Article  CAS  Google Scholar 

  119. 119.

    Lany S, Zunger A (2008) Phys Rev B 78(23):17

    Article  CAS  Google Scholar 

  120. 120.

    Madsen GKH, Bentien A, Johnsen S, Iversen BB (2005) In: Proceedings of the 24th International Conference on Thermoelectrics, vol. 8328. IEEE, New York

  121. 121.

    Petrovic C, Lee Y, Vogt T, Lazarov N, Budko S, Canfield P (2005) Phys Rev B 72(4):1

    Article  CAS  Google Scholar 

  122. 122.

    Bentien A, Madsen G, Johnsen S, Iversen B (2006) Phys Rev B 74(20):2

    Article  CAS  Google Scholar 

  123. 123.

    Bentien A, Johnsen S, Madsen GKH, Iversen BB, Steglich F (2007) Europhys Lett (EPL) 80(1):17008

    Article  CAS  Google Scholar 

  124. 124.

    Comstock R (2002) J Mater Sci: Mater Electron 13(9):509

    CAS  Article  Google Scholar 

  125. 125.

    Spaldin NA (2010) Magnetic materials: fundamentals and applications. Cambridge University Press

    Book  Google Scholar 

  126. 126.

    Dronskowski R, Korczak K, Lueken H, Jung W (2002) Angew Chem Int Ed 41(14):2528 (in English)

    CAS  Article  Google Scholar 

  127. 127.

    von Appen J, Dronskowski R (2005) Angew Chem Int Ed 44(8):1205 (in English)

    Article  CAS  Google Scholar 

  128. 128.

    Houben A, Müller P, von Appen J, Lueken H, Niewa R, Dronskowski R (2005) Angew Chem Int Ed 44(44):7212 (in English)

    CAS  Article  Google Scholar 

  129. 129.

    Houben A, Sepelak V, Becker KD, Dronskowski R (2009) Chem Mater 21:784

    CAS  Article  Google Scholar 

  130. 130.

    Burkert T, Nordström L, Eriksson O, Heinonen O (2004) Phys Rev Lett 93(2):1

    Article  CAS  Google Scholar 

  131. 131.

    Winkelmann A, Przybylski M, Luo F, Shi Y, Barthel J (2006) Phys Rev Lett 96(25):1

    Article  CAS  Google Scholar 

  132. 132.

    Andersson G, Burkert T, Warnicke P, Björck M, Sanyal B, Chacon C, Zlotea C, Nordström L, Nordblad P, Eriksson O (2006) Phys Rev Lett 96(3):1

    Article  CAS  Google Scholar 

  133. 133.

    Neise C, Schönecker S, Richter M, Koepernik K, Eschrig H (2011) Phys Status Solidi (B) 248(10):2398

    CAS  Article  Google Scholar 

  134. 134.

    Julliere M (1975) Phys Lett A 54(3):225

    Article  Google Scholar 

  135. 135.

    Mathon J, Umerski A (2001) Phys Rev B 63(22):1

    Article  CAS  Google Scholar 

  136. 136.

    Butler W, Zhang XG, Schulthess T, MacLaren J (2001) Phys Rev B 63(5):1

    Article  CAS  Google Scholar 

  137. 137.

    Bowen M, Cros V, Petroff F, Fert A, Martnez Boubeta C, Costa-Kramer JL, Anguita JV, Cebollada A, Briones F, de Teresa JM, Morellon L, Ibarra MR, Guell F, Peiro F, Cornet A (2001) Appl Phys Lett 79(11):1655

    CAS  Article  Google Scholar 

  138. 138.

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3(12):868

    CAS  Article  Google Scholar 

  139. 139.

    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Nat Mater 3(12):862

    CAS  Article  Google Scholar 

  140. 140.

    Spaldin Na, Fiebig M (2005) Science 309(5733):391

    CAS  Article  Google Scholar 

  141. 141.

    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442(7104):759

    CAS  Article  Google Scholar 

  142. 142.

    Hill N (2000) J Phys Chem B 104(29):6694

    CAS  Article  Google Scholar 

  143. 143.

    Ederer C, Spaldin NA (2005) Curr Opin Solid State Mater Sci 9(3):128

    CAS  Article  Google Scholar 

  144. 144.

    Hill N, Rabe K (1999) Phys Rev B 59(13):8759

    CAS  Article  Google Scholar 

  145. 145.

    Moreira dos Santos A (2002) Solid State Commun 122:49

    CAS  Article  Google Scholar 

  146. 146.

    Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Phys Rev B 67(18):2

    Article  CAS  Google Scholar 

  147. 147.

    Cheong SW, Mostovoy M (2007) Nat Mater 6(1):13

    CAS  Article  Google Scholar 

  148. 148.

    Rushchanskii KZ, Kamba S, Goian V, Vanek P, Savinov M, Prokleska J, Nuzhnyy D, Knízek K, Laufek F, Eckel S, Lamoreaux SK, Sushkov aO, Lezaić M, Spaldin Na (2010) Nat Mater 9(8):649

    CAS  Article  Google Scholar 

  149. 149.

    Mintmire J, Dunlap B (1992) Phys Rev Lett 68(5):631

    CAS  Article  Google Scholar 

  150. 150.

    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60(18):2204

    CAS  Article  Google Scholar 

  151. 151.

    Wildoer J, Venema L, Rinzler A, Smalley R (1998) Nature 584(10):59

    Article  Google Scholar 

  152. 152.

    Rubio A, Corkill J, Cohen M (1994) Phys Rev B, Condens Matter 49(7):5081

    CAS  Article  Google Scholar 

  153. 153.

    Blase X, Rubio A, Louie S (1994) Europhys Lett 28: 335

  154. 154.

    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269(5226):966

    CAS  Article  Google Scholar 

  155. 155.

    Fuentes G, Borowiak-Palen E, Pichler T, Liu X, Graff A, Behr G, Kalenczuk R, Knupfer M, Fink J (2003) Phys Rev B 67(3):1

    Article  CAS  Google Scholar 

  156. 156.

    Czerw R, Webster S, Carroll DL, Vieira SMC, Birkett PR, Rego CA, Roth S (2003) Appl Phys Lett 83(8):1617

    CAS  Article  Google Scholar 

  157. 157.

    Arenal R, Stéphan O, Kociak M, Taverna D, Loiseau A, Colliex C (2005) Phys Rev Lett 95(12):1

    Article  CAS  Google Scholar 

  158. 158.

    Khoo K, Mazzoni M, Louie S (2004) Phys Rev B 69(20):1

    Article  CAS  Google Scholar 

  159. 159.

    Ishigami M, Sau J, Aloni S, Cohen M, Zettl A (2005) Phys Rev Lett 94(5):1

    Article  CAS  Google Scholar 

  160. 160.

    Greeley J, Nørskov JK, Mavrikakis M (2002) Ann Rev Phys Chem 53:319

    CAS  Article  Google Scholar 

  161. 161.

    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Nat Acad Sci USA 108(3):937

    Article  Google Scholar 

  162. 162.

    Deutschmann O, Knözinger H, Kochloefl K, Turek T (2011) In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  163. 163.

    Rootsaert WJM, Sachtler WMH (1960) Zeitschrift Physik Chem 26(1–2):16

    CAS  Article  Google Scholar 

  164. 164.

    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2011) Science 320:1320

    Article  CAS  Google Scholar 

  165. 165.

    Besenbacher F (1998) Science 279(5358):1913

    CAS  Article  Google Scholar 

  166. 166.

    Kratzer P, Hammer B, Nørskov JK (1996) J Chem Phys 105(13):5595

    CAS  Article  Google Scholar 

  167. 167.

    Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) J Am Chem Soc 2:7418

    Article  CAS  Google Scholar 

  168. 168.

    Chaudhuri S, Muckerman JT (2005) J Phys Chem B 109(15):6952

    CAS  Article  Google Scholar 

  169. 169.

    Chopra IS, Chaudhuri S, Veyan JF, Chabal YJ (2011) Nat Mater 10(11):884

    CAS  Article  Google Scholar 

  170. 170.

    Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Nat Mater 5(11):909

    CAS  Article  Google Scholar 

  171. 171.

    Greeley J, Nørskov JK (2007) Surf Sci 601(6):1590

    CAS  Article  Google Scholar 

  172. 172.

    Cohen M (1994) Solid State Commun 92(1–2):45

    CAS  Article  Google Scholar 

  173. 173.

    Zunger A (1998) Curr Opin Solid State Mater Sci 3(1):32

    CAS  Article  Google Scholar 

  174. 174.

    Ceder G (1998) Science 280(5366):1099

    CAS  Article  Google Scholar 

  175. 175.

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Nature 410(6824):63. doi:10.1038/35065039

    CAS  Article  Google Scholar 

  176. 176.

    Greeley J, Nørskov JK (2009) J Phys Chem C 113(12):4932

    CAS  Article  Google Scholar 

  177. 177.

    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495

    CAS  Article  Google Scholar 

  178. 178.

    Munter TR, Landis DD, Abild-Pedersen F, Jones G, Wang S, Bligaard T (2009) Comput Sci Discov 2(1):015006

    Article  CAS  Google Scholar 

  179. 179.

    Setyawan W, Curtarolo S (2010) Comput Mater Sci 49(2):299

    Article  Google Scholar 

  180. 180.

    Hummelshøj JS, Landis DD, Voss J, Jiang T, Tekin A, Bork N, Duak M, Mortensen JJ, Adamska L, Andersin J, Baran JD, Barmparis GD, Bell F, Bezanilla AL, Bjork J, Björketun ME, Bleken F, Buchter F, Bürkle M, Burton PD, Buus BB, Calborean A, Calle-Vallejo F, Casolo S, Chandler BD, Chi DH, Czekaj I, Datta S, Datye A, DeLaRiva A, Despoja V, Dobrin S, Engelund M, Ferrighi L, Frondelius P, Fu Q, Fuentes A, Fürst J, García-Fuente A, Gavnholt J, Goeke R, Gudmundsdottir S, Hammond KD, Hansen HA, Hibbitts D, Hobi E, Howalt JG, Hruby SL, Huth A, Isaeva L, Jelic J, Jensen IJT, Kacprzak KA, Kelkkanen A, Kelsey D, Kesanakurthi DS, Kleis J, Klüpfel PJ, Konstantinov I, Korytar R, Koskinen P, Krishna C, Kunkes E, Larsen AH, Lastra JMG, Lin H, Lopez-Acevedo O, Mantega M, Martínez JI, Mesa IN, Mowbray DJ, Mýrdal JSG, Natanzon Y, Nistor A, Olsen T, Park H, Pedroza LS, Petzold V, Plaisance C, Rasmussen JA, Ren H, Rizzi M, Ronco AS, Rostgaard C, Saadi S, Salguero LA, Santos EJG, Schoenhalz AL, Shen J, Smedemand M, Stausholm-Møller OJ, Stibius M, Strange M, Su HB, Temel B, Toftelund A, Tripkovic V, Vanin M, Viswanathan V, Vojvodic A, Wang S, Wellendorff J, Thygesen KS, Rossmeisl J, Bligaard T, Jacobsen KW, Nørskov JK, Vegge T (2009) J Chem Phys 131(1):014101

    Article  CAS  Google Scholar 

  181. 181.

    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495

    CAS  Article  Google Scholar 

  182. 182.

    Mueller T, Hautier G, Jain A, Ceder G (2011) Chem Mater 23:3854

    CAS  Article  Google Scholar 

  183. 183.

    Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sánchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849

    CAS  Article  Google Scholar 

  184. 184.

    Wang S, Wang Z, Setyawan W, Mingo N, Curtarolo S (2011) Phys Rev X 1(2):1

    Google Scholar 

  185. 185.

    Ortiz C, Eriksson O, Klintenberg M (2009) Comput Mater Sci 44(4):1042

    CAS  Article  Google Scholar 

  186. 186.

    Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) ACS Comb Sci 13(4): 382

    Google Scholar 

  187. 187.

    Castelli IE, Olsen T, Datta S, Landis DD, Dahl Sr, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5: 5814. doi:10.1039/C1EE02717D

  188. 188.

    http://www.materialsproject.org. Accessed 15 March 2012

  189. 189.

    http://www.aflowlib.org. Accessed 15 March 2012

  190. 190.

    http://gurka.fysik.uu.se/ESP/. Accessed 15 March 2012

Download references

Acknowledgements

Geoffroy Hautier acknowledges the F.R.S.-FNRS Belgium for financial support under a “Chargé de Recherche” grant. Anubhav Jain acknowledges funding through the U.S. Government under Contract DE-AC02-05CH11231 and the Luis W. Alvarez Fellowship in Computational Science. The authors would like also to strongly acknowledge the many experts who were kind enough to share their thoughts and experience in materials design: Gerbrand Ceder, Jean-Christophe Charlier, Ralf Drautz, Richard Dronskowski, Olle Eriksson, Jeffrey Greeley, Xavier Gonze, Karl Johnson, Aleksey Kolmogorov, Georg Madsen, Jeff Neaton, and Nicola Spaldin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geoffroy Hautier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hautier, G., Jain, A. & Ong, S.P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci 47, 7317–7340 (2012). https://doi.org/10.1007/s10853-012-6424-0

Download citation

Keywords

  • Density Functional Theory
  • Cathode Material
  • Oxygen Reduction Reaction
  • LiFePO4
  • MgH2