Journal of Materials Science

, Volume 47, Issue 21, pp 7317–7340 | Cite as

From the computer to the laboratory: materials discovery and design using first-principles calculations

  • Geoffroy HautierEmail author
  • Anubhav Jain
  • Shyue Ping Ong
First Principles Computations


The development of new technological materials has historically been a difficult and time-consuming task. The traditional role of computation in materials design has been to better understand existing materials. However, an emerging paradigm for accelerated materials discovery is to design new compounds in silico using first-principles calculations, and then perform experiments on the computationally designed candidates. In this paper, we provide a review of ab initio computational materials design, focusing on instances in which a computational approach has been successfully applied to propose new materials of technological interest in the laboratory. Our examples include applications in renewable energy, electronic, magnetic and multiferroic materials, and catalysis, demonstrating that computationally guided materials design is a broadly applicable technique. We then discuss some of the common features and limitations of successful theoretical predictions across fields, examining the different ways in which first-principles calculations can guide the final experimental result. Finally, we present a future outlook in which we expect that new models of computational search, such as high-throughput studies, will play a greater role in guiding materials advancements.


Density Functional Theory Cathode Material Oxygen Reduction Reaction LiFePO4 MgH2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Geoffroy Hautier acknowledges the F.R.S.-FNRS Belgium for financial support under a “Chargé de Recherche” grant. Anubhav Jain acknowledges funding through the U.S. Government under Contract DE-AC02-05CH11231 and the Luis W. Alvarez Fellowship in Computational Science. The authors would like also to strongly acknowledge the many experts who were kind enough to share their thoughts and experience in materials design: Gerbrand Ceder, Jean-Christophe Charlier, Ralf Drautz, Richard Dronskowski, Olle Eriksson, Jeffrey Greeley, Xavier Gonze, Karl Johnson, Aleksey Kolmogorov, Georg Madsen, Jeff Neaton, and Nicola Spaldin.


  1. 1.
    Eagar TW (1995) Technol Rev 98(2)Google Scholar
  2. 2.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  3. 3.
    ABINIT. Accessed 15 March 2012
  4. 4.
    Vienna Ab Initio Simulation Package (VASP). Accessed 15 March 2012
  5. 5.
    Quantum Espresso. Accessed 15 March 2012
  6. 6.
    Hafner J (2000) Acta Mater 48(1):71CrossRefGoogle Scholar
  7. 7.
    Hafner J, Wolverton C, Ceder G (2006) MRS Bull 31(9):659CrossRefGoogle Scholar
  8. 8.
    Martin RM (2004) In: Electronic structure: basic theory and practical methods, vol 1. Cambridge University Press, New YorkCrossRefGoogle Scholar
  9. 9.
    Burke K (2003) The ABC of DFT. Accessed 15 March 2012
  10. 10.
    Argaman N, Makov G (2000) Am J Phys 68(1):69CrossRefGoogle Scholar
  11. 11.
    Carter EA (2008) Science 321(5890):800CrossRefGoogle Scholar
  12. 12.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  13. 13.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691CrossRefGoogle Scholar
  15. 15.
    Jonsson H, Mills G, Jacobsen KW (1998) In: Nudged elastic band method for finding minimum energy paths of transitions. World Scientific Publishing Co. Pte. Ltd., SingaporeGoogle Scholar
  16. 16.
    Mills G, Jónsson H (1994) Phys Rev Lett 72(7):1124CrossRefGoogle Scholar
  17. 17.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys: Condens Matter 9:767CrossRefGoogle Scholar
  18. 18.
    Zhou F, Cococcioni M, Kang K, Ceder G (2004) Electrochem Commun 6:1144CrossRefGoogle Scholar
  19. 19.
    Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105CrossRefGoogle Scholar
  20. 20.
    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73(19):195107CrossRefGoogle Scholar
  21. 21.
    Wang L, Maxisch T, Ceder G (2007) Chem Mater 19(3):543CrossRefGoogle Scholar
  22. 22.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124(21):219906CrossRefGoogle Scholar
  23. 23.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207CrossRefGoogle Scholar
  24. 24.
    Heyd J, Scuseria GE (2004) J Chem Phys 121(3):1187CrossRefGoogle Scholar
  25. 25.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Phys Rev B 82(7):075122CrossRefGoogle Scholar
  26. 26.
    Wang C, Pickett W (1983) Phys Rev Lett 51(7):597CrossRefGoogle Scholar
  27. 27.
    Sham L, Schlüter M (1983) Phys Rev Lett 51(20):1888CrossRefGoogle Scholar
  28. 28.
    Cohen A, Mori-Sánchez P, Yang W (2008) Phys Rev B 77(11): 115123Google Scholar
  29. 29.
    Chan M, Ceder G (2010) Phys Rev Lett 105(19):196403CrossRefGoogle Scholar
  30. 30.
    Hedin L (1965) Phys Rev 139(3A):A796CrossRefGoogle Scholar
  31. 31.
    Aryasetiawan F, Gunnarsson O (1998) Rep Progr Phys 61:237CrossRefGoogle Scholar
  32. 32.
    Runge E, Gross EKU (1984) Phys Rev Lett 52(12):997CrossRefGoogle Scholar
  33. 33.
    Tran F, Blaha P (2009) Phys Rev Lett 102(22):5CrossRefGoogle Scholar
  34. 34.
    Kuisma M, Ojanen J, Enkovaara J, Rantala T (2010) Phys Rev B 82(11):1CrossRefGoogle Scholar
  35. 35.
    Gritsenko O, van Leeuwen R, van Lenthe E, Baerends E (1995) Phys Rev A 51(3):1944CrossRefGoogle Scholar
  36. 36.
    Maddox J (1998) Nature 335:201Google Scholar
  37. 37.
    Schon JC, Doll K, Jansen M (2010) Phys Status Solidi (B) 247(1):23CrossRefGoogle Scholar
  38. 38.
    Woodley SM, Catlow R (2008) Nat Mater 7(12):937CrossRefGoogle Scholar
  39. 39.
    O’Keeffe M (2010) Phys Chem Chem Phys: PCCP 12: 8580. doi: 10.1039/C004039H
  40. 40.
    Lany S (2008) Phys Rev B 78(24):1CrossRefGoogle Scholar
  41. 41.
    Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) Comput Mater Sci 50:2295CrossRefGoogle Scholar
  42. 42.
    Jain A, Hautier G, Ong SP, Moore C, Fischer CC, Ceder G (2011) Phys Rev B 84:045115CrossRefGoogle Scholar
  43. 43.
    Hautier G, Ong SP, Jain A, Moore CJ, Ceder G (2012) Phys Rev B 85:155208. doi: 10.1103/PhysRevB.85.155208 CrossRefGoogle Scholar
  44. 44.
    Oganov AR, Valle M (2009) J Chem Phys 130(10):104504CrossRefGoogle Scholar
  45. 45.
    Ducastelle F (1991) In: Order and phase stability in alloys, (Cohesion and Structure) , vol 3. North Holland, AmsterdamGoogle Scholar
  46. 46.
    Ceder G (1993) Comput Mater Sci 1(2):144CrossRefGoogle Scholar
  47. 47.
    Sanati M, Wang L, Zunger A (2003) Phys Rev Lett 90(4):1CrossRefGoogle Scholar
  48. 48.
    Blum V, Zunger A (2004) Phys Rev B 69(2):20103CrossRefGoogle Scholar
  49. 49.
    Hart GLW (2009) Phys Rev B 80(1):1Google Scholar
  50. 50.
    Van Der Ven A, Aydinol MK, Ceder G (1998) J Electrochem Soc 145(6):2149CrossRefGoogle Scholar
  51. 51.
    Wales DJ, Doye JPK (1997) J Phys Chem A 101(28):5111CrossRefGoogle Scholar
  52. 52.
    Wales DJ, Scheraga HA (1999) Science 285(5432):1368CrossRefGoogle Scholar
  53. 53.
    Bush TS, Catlow CRA, Battle PD (1995) J Mater Chem 5(8):1269CrossRefGoogle Scholar
  54. 54.
    Abraham NL, Probert MIJ (2006) Phys Rev B 73(22):1CrossRefGoogle Scholar
  55. 55.
    Oganov AR, Glass CW (2006) J Chem Phys 124(24):244704CrossRefGoogle Scholar
  56. 56.
    Trimarchi G, Zunger A (2007) Phys Rev B 75(10):1CrossRefGoogle Scholar
  57. 57.
    Oganov AR, Glass CW (2006) J Phys: Condens Matter 20(6):064210CrossRefGoogle Scholar
  58. 58.
    Zhang X, Zunger A, Trimarchi G (2010) J Chem Phys 133(19):194504CrossRefGoogle Scholar
  59. 59.
    Oganov AR, Chen J, Gatti C, Ma Y, Ma Y, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Nature 457(February):863. doi: 10.1038/nature07736 CrossRefGoogle Scholar
  60. 60.
    Kolmogorov A, Shah S, Margine E, Bialon A, Hammerschmidt T, Drautz R (2010) Phys Rev Lett 105(21):1CrossRefGoogle Scholar
  61. 61.
    Ono S, Kikegawa T, Ohishi Y (2007) Am Miner 92(7):1246CrossRefGoogle Scholar
  62. 62.
    Liebold-Ribeiro Y, Fischer D, Jansen M (2008) Angew Chem Int Ed 47(23):4428 (in English)CrossRefGoogle Scholar
  63. 63.
    Johnson DC (2008) Nature 454( 7201):174CrossRefGoogle Scholar
  64. 64.
    Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) MRS Bull 31(12):981CrossRefGoogle Scholar
  65. 65.
    Curtarolo S, Morgan D, Persson K, Rodgers J, Ceder G (2003) Phys Rev Lett 91(13):1CrossRefGoogle Scholar
  66. 66.
    Fischer CC, Tibbetts KJ, Morgan D, Ceder G (2006) Nat Mater 5(8):641CrossRefGoogle Scholar
  67. 67.
    Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Inorg Chem 50:656CrossRefGoogle Scholar
  68. 68.
    Kolmogorov AN, Curtarolo S (2006) Phys Rev B 74(22):1CrossRefGoogle Scholar
  69. 69.
    Kolmogorov AN, Curtarolo S (2006) Phys Rev B 73(18):1CrossRefGoogle Scholar
  70. 70.
    Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2009) J Am Chem Soc 29: 163Google Scholar
  71. 71.
    Hautier G, Fischer CC, Jain A, Mueller T, Ceder G (2010) Chem Mater 22:3762CrossRefGoogle Scholar
  72. 72. Accessed 15 March 2012
  73. 73.
    Fix T, Sahonta SL, Garcia V, MacManus-Driscoll JL, Blamire MG (2011) Cryst Growth Des 11 (5): 1422Google Scholar
  74. 74.
    Uratani Y, Shishidou T, Oguchi T (2008) Jpn J Appl Phys 47(9):7735CrossRefGoogle Scholar
  75. 75.
    Matar S, Baraille I, Subramanian M (2009) Chem Phys 355(1):43CrossRefGoogle Scholar
  76. 76. Accessed 15 March 2012
  77. 77. Accessed 15 March 2012
  78. 78.
  79. 79.
    Wadia C, Alivisatos AP, Kammen DM (2009) Environ Sci Technol 43(6):2072CrossRefGoogle Scholar
  80. 80.
    Wadia C, Albertus P, Srinivasan V (2011) J Power Sour 196(3):1593CrossRefGoogle Scholar
  81. 81.
    Jaramillo P, Samaras C, Wakeley H, Meisterling K (2009) Energy Policy 37(7):2689CrossRefGoogle Scholar
  82. 82.
    ISuppli IHS (2011) IHS iSuppli Rechargeable Battery Special Report. Tech. rep.Google Scholar
  83. 83.
    Aydinol M, Kohan A, Ceder G, Cho K, Joannopoulos J (1997) Phys Rev B 56(3):1354CrossRefGoogle Scholar
  84. 84.
    Maxisch T, Zhou F, Ceder G (2006) Phys Rev B 73(10):1CrossRefGoogle Scholar
  85. 85.
    Morgan D, Van Der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7(2):A30CrossRefGoogle Scholar
  86. 86.
    Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 4:1Google Scholar
  87. 87.
    Ceder G, Hautier G, Jain A, Ong S (2011) MRS Bull 36(03):185Google Scholar
  88. 88.
    Meng YS, Arroyo-de Dompablo ME (2009) Energy Environ Sci 2(6):589CrossRefGoogle Scholar
  89. 89.
    Ceder G (2010) MRS Bull 35(September):693. doi: 10.1557/mrs2010.681 CrossRefGoogle Scholar
  90. 90.
    Ceder G, Chiang YM, Sadoway D, Aydinol M, Jang YI, Huang B (1998) Nature 392(6677):694CrossRefGoogle Scholar
  91. 91.
    Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Science 311(5763):977CrossRefGoogle Scholar
  92. 92.
    Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012, submitted)Google Scholar
  93. 93.
    Legagneur V (2001) Solid State Ion 139(1–2):37CrossRefGoogle Scholar
  94. 94.
    Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) J Electrochem Soc 158(3):A309CrossRefGoogle Scholar
  95. 95.
    Ceder G, Kim JC, Kang B, Moore CJ, Hautier G (2011) International Patent Application PCT/US2011/035432Google Scholar
  96. 96.
    Ceder G, Jain A, Hautier G, Kim JC, Kang BW (2010) US Patent Application 12/857262Google Scholar
  97. 97.
    Kuang Q, Xu J, Zhao Y, Chen X, Chen L (2011) Electrochim Acta 56(5):2201CrossRefGoogle Scholar
  98. 98.
    Kuang Q, Lin Z, Zhao Y, Chen X, Chen L (2011) J Mater Chem 3:2Google Scholar
  99. 99.
    Jain A, Hautier G, Moore CJ, Kang B, Lee J, Chen H, Twu N, Ceder G (2012) J Electrochem Soc 159(5):A622CrossRefGoogle Scholar
  100. 100.
    Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) J Mater Chem 21:17147CrossRefGoogle Scholar
  101. 101.
    Ceder G, Chen H, Doe RE, Hautier G, Jain A, Kang B (2011) International patent application pct/us2011/025684Google Scholar
  102. 102.
    Crabtree GW, Dresselhaus MS (2008) MRS Bull 33(4):421CrossRefGoogle Scholar
  103. 103.
    Wolverton C, Siegel DJ, Akbarzadeh aR, Ozoliš V (2008) J Phys: Condens Matter 20(6):064228CrossRefGoogle Scholar
  104. 104.
    Ozolins V, Akbarzadeh aR, Gunaydin H, Michel K, Wolverton C, Majzoub EH (2009) J Phys: Conf Ser 180:012076CrossRefGoogle Scholar
  105. 105.
    Alapati SV, Johnson JK, Sholl DS (2006) J Phys Chem B 110(17):8769CrossRefGoogle Scholar
  106. 106.
    Lu J, Fang Z, Choi Y, Sohn H (2007) J Phys Chem C 111(32):12129CrossRefGoogle Scholar
  107. 107.
    Luo W (2004) J Alloys Compd 381(1–2):284CrossRefGoogle Scholar
  108. 108.
    Osborn W, Markmaitree T, Shaw LL (2007) J Power Sour 172(1):376CrossRefGoogle Scholar
  109. 109.
    Liu Y, Zhong K, Gao M, Wang J, Pan H, Wang Q (2008) System 2(6):3521Google Scholar
  110. 110.
    Lu J, Choi YJ, Fang ZZ, Sohn HY (2010) J Power Sour 195(7):1992CrossRefGoogle Scholar
  111. 111.
    Tritt TM, Böttner H, Chen L (2008) MRS Bull 33(4):366CrossRefGoogle Scholar
  112. 112.
    Tritt T, Subramanian M (2006) MRS Bull 31(03):188CrossRefGoogle Scholar
  113. 113.
    Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Caillat T (2003) Int Mater Rev 48(1):45CrossRefGoogle Scholar
  114. 114.
    Madsen GKH(2006) J Am Chem Soc 128(37):12140CrossRefGoogle Scholar
  115. 115.
    Bergerhoff G, Hundt R, Sievers R, Brown I (1983) J Chem Inf Comput Sci 23(2):66Google Scholar
  116. 116.
    Inorganic Crystal Structure Database. Accessed 15 March 2012
  117. 117.
    Toberer ES, May AF, Scanlon CJ, Snyder GJ (2009) J Appl Phys 105(6):063701CrossRefGoogle Scholar
  118. 118.
    Van De Walle CG, Neugebauer J (2004) J Appl Phys 95(8):3851CrossRefGoogle Scholar
  119. 119.
    Lany S, Zunger A (2008) Phys Rev B 78(23):17CrossRefGoogle Scholar
  120. 120.
    Madsen GKH, Bentien A, Johnsen S, Iversen BB (2005) In: Proceedings of the 24th International Conference on Thermoelectrics, vol. 8328. IEEE, New YorkGoogle Scholar
  121. 121.
    Petrovic C, Lee Y, Vogt T, Lazarov N, Budko S, Canfield P (2005) Phys Rev B 72(4):1CrossRefGoogle Scholar
  122. 122.
    Bentien A, Madsen G, Johnsen S, Iversen B (2006) Phys Rev B 74(20):2CrossRefGoogle Scholar
  123. 123.
    Bentien A, Johnsen S, Madsen GKH, Iversen BB, Steglich F (2007) Europhys Lett (EPL) 80(1):17008CrossRefGoogle Scholar
  124. 124.
    Comstock R (2002) J Mater Sci: Mater Electron 13(9):509CrossRefGoogle Scholar
  125. 125.
    Spaldin NA (2010) Magnetic materials: fundamentals and applications. Cambridge University PressCrossRefGoogle Scholar
  126. 126.
    Dronskowski R, Korczak K, Lueken H, Jung W (2002) Angew Chem Int Ed 41(14):2528 (in English)CrossRefGoogle Scholar
  127. 127.
    von Appen J, Dronskowski R (2005) Angew Chem Int Ed 44(8):1205 (in English)CrossRefGoogle Scholar
  128. 128.
    Houben A, Müller P, von Appen J, Lueken H, Niewa R, Dronskowski R (2005) Angew Chem Int Ed 44(44):7212 (in English)CrossRefGoogle Scholar
  129. 129.
    Houben A, Sepelak V, Becker KD, Dronskowski R (2009) Chem Mater 21:784CrossRefGoogle Scholar
  130. 130.
    Burkert T, Nordström L, Eriksson O, Heinonen O (2004) Phys Rev Lett 93(2):1CrossRefGoogle Scholar
  131. 131.
    Winkelmann A, Przybylski M, Luo F, Shi Y, Barthel J (2006) Phys Rev Lett 96(25):1CrossRefGoogle Scholar
  132. 132.
    Andersson G, Burkert T, Warnicke P, Björck M, Sanyal B, Chacon C, Zlotea C, Nordström L, Nordblad P, Eriksson O (2006) Phys Rev Lett 96(3):1CrossRefGoogle Scholar
  133. 133.
    Neise C, Schönecker S, Richter M, Koepernik K, Eschrig H (2011) Phys Status Solidi (B) 248(10):2398CrossRefGoogle Scholar
  134. 134.
    Julliere M (1975) Phys Lett A 54(3):225CrossRefGoogle Scholar
  135. 135.
    Mathon J, Umerski A (2001) Phys Rev B 63(22):1CrossRefGoogle Scholar
  136. 136.
    Butler W, Zhang XG, Schulthess T, MacLaren J (2001) Phys Rev B 63(5):1CrossRefGoogle Scholar
  137. 137.
    Bowen M, Cros V, Petroff F, Fert A, Martnez Boubeta C, Costa-Kramer JL, Anguita JV, Cebollada A, Briones F, de Teresa JM, Morellon L, Ibarra MR, Guell F, Peiro F, Cornet A (2001) Appl Phys Lett 79(11):1655CrossRefGoogle Scholar
  138. 138.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3(12):868CrossRefGoogle Scholar
  139. 139.
    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Nat Mater 3(12):862CrossRefGoogle Scholar
  140. 140.
    Spaldin Na, Fiebig M (2005) Science 309(5733):391CrossRefGoogle Scholar
  141. 141.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442(7104):759CrossRefGoogle Scholar
  142. 142.
    Hill N (2000) J Phys Chem B 104(29):6694CrossRefGoogle Scholar
  143. 143.
    Ederer C, Spaldin NA (2005) Curr Opin Solid State Mater Sci 9(3):128CrossRefGoogle Scholar
  144. 144.
    Hill N, Rabe K (1999) Phys Rev B 59(13):8759CrossRefGoogle Scholar
  145. 145.
    Moreira dos Santos A (2002) Solid State Commun 122:49CrossRefGoogle Scholar
  146. 146.
    Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Phys Rev B 67(18):2CrossRefGoogle Scholar
  147. 147.
    Cheong SW, Mostovoy M (2007) Nat Mater 6(1):13CrossRefGoogle Scholar
  148. 148.
    Rushchanskii KZ, Kamba S, Goian V, Vanek P, Savinov M, Prokleska J, Nuzhnyy D, Knízek K, Laufek F, Eckel S, Lamoreaux SK, Sushkov aO, Lezaić M, Spaldin Na (2010) Nat Mater 9(8):649CrossRefGoogle Scholar
  149. 149.
    Mintmire J, Dunlap B (1992) Phys Rev Lett 68(5):631CrossRefGoogle Scholar
  150. 150.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60(18):2204CrossRefGoogle Scholar
  151. 151.
    Wildoer J, Venema L, Rinzler A, Smalley R (1998) Nature 584(10):59CrossRefGoogle Scholar
  152. 152.
    Rubio A, Corkill J, Cohen M (1994) Phys Rev B, Condens Matter 49(7):5081CrossRefGoogle Scholar
  153. 153.
    Blase X, Rubio A, Louie S (1994) Europhys Lett 28: 335Google Scholar
  154. 154.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269(5226):966CrossRefGoogle Scholar
  155. 155.
    Fuentes G, Borowiak-Palen E, Pichler T, Liu X, Graff A, Behr G, Kalenczuk R, Knupfer M, Fink J (2003) Phys Rev B 67(3):1CrossRefGoogle Scholar
  156. 156.
    Czerw R, Webster S, Carroll DL, Vieira SMC, Birkett PR, Rego CA, Roth S (2003) Appl Phys Lett 83(8):1617CrossRefGoogle Scholar
  157. 157.
    Arenal R, Stéphan O, Kociak M, Taverna D, Loiseau A, Colliex C (2005) Phys Rev Lett 95(12):1CrossRefGoogle Scholar
  158. 158.
    Khoo K, Mazzoni M, Louie S (2004) Phys Rev B 69(20):1CrossRefGoogle Scholar
  159. 159.
    Ishigami M, Sau J, Aloni S, Cohen M, Zettl A (2005) Phys Rev Lett 94(5):1CrossRefGoogle Scholar
  160. 160.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Ann Rev Phys Chem 53:319CrossRefGoogle Scholar
  161. 161.
    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Nat Acad Sci USA 108(3):937CrossRefGoogle Scholar
  162. 162.
    Deutschmann O, Knözinger H, Kochloefl K, Turek T (2011) In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  163. 163.
    Rootsaert WJM, Sachtler WMH (1960) Zeitschrift Physik Chem 26(1–2):16CrossRefGoogle Scholar
  164. 164.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2011) Science 320:1320CrossRefGoogle Scholar
  165. 165.
    Besenbacher F (1998) Science 279(5358):1913CrossRefGoogle Scholar
  166. 166.
    Kratzer P, Hammer B, Nørskov JK (1996) J Chem Phys 105(13):5595CrossRefGoogle Scholar
  167. 167.
    Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) J Am Chem Soc 2:7418CrossRefGoogle Scholar
  168. 168.
    Chaudhuri S, Muckerman JT (2005) J Phys Chem B 109(15):6952CrossRefGoogle Scholar
  169. 169.
    Chopra IS, Chaudhuri S, Veyan JF, Chabal YJ (2011) Nat Mater 10(11):884CrossRefGoogle Scholar
  170. 170.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Nat Mater 5(11):909CrossRefGoogle Scholar
  171. 171.
    Greeley J, Nørskov JK (2007) Surf Sci 601(6):1590CrossRefGoogle Scholar
  172. 172.
    Cohen M (1994) Solid State Commun 92(1–2):45CrossRefGoogle Scholar
  173. 173.
    Zunger A (1998) Curr Opin Solid State Mater Sci 3(1):32CrossRefGoogle Scholar
  174. 174.
    Ceder G (1998) Science 280(5366):1099CrossRefGoogle Scholar
  175. 175.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Nature 410(6824):63. doi: 10.1038/35065039 CrossRefGoogle Scholar
  176. 176.
    Greeley J, Nørskov JK (2009) J Phys Chem C 113(12):4932CrossRefGoogle Scholar
  177. 177.
    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495CrossRefGoogle Scholar
  178. 178.
    Munter TR, Landis DD, Abild-Pedersen F, Jones G, Wang S, Bligaard T (2009) Comput Sci Discov 2(1):015006CrossRefGoogle Scholar
  179. 179.
    Setyawan W, Curtarolo S (2010) Comput Mater Sci 49(2):299CrossRefGoogle Scholar
  180. 180.
    Hummelshøj JS, Landis DD, Voss J, Jiang T, Tekin A, Bork N, Duak M, Mortensen JJ, Adamska L, Andersin J, Baran JD, Barmparis GD, Bell F, Bezanilla AL, Bjork J, Björketun ME, Bleken F, Buchter F, Bürkle M, Burton PD, Buus BB, Calborean A, Calle-Vallejo F, Casolo S, Chandler BD, Chi DH, Czekaj I, Datta S, Datye A, DeLaRiva A, Despoja V, Dobrin S, Engelund M, Ferrighi L, Frondelius P, Fu Q, Fuentes A, Fürst J, García-Fuente A, Gavnholt J, Goeke R, Gudmundsdottir S, Hammond KD, Hansen HA, Hibbitts D, Hobi E, Howalt JG, Hruby SL, Huth A, Isaeva L, Jelic J, Jensen IJT, Kacprzak KA, Kelkkanen A, Kelsey D, Kesanakurthi DS, Kleis J, Klüpfel PJ, Konstantinov I, Korytar R, Koskinen P, Krishna C, Kunkes E, Larsen AH, Lastra JMG, Lin H, Lopez-Acevedo O, Mantega M, Martínez JI, Mesa IN, Mowbray DJ, Mýrdal JSG, Natanzon Y, Nistor A, Olsen T, Park H, Pedroza LS, Petzold V, Plaisance C, Rasmussen JA, Ren H, Rizzi M, Ronco AS, Rostgaard C, Saadi S, Salguero LA, Santos EJG, Schoenhalz AL, Shen J, Smedemand M, Stausholm-Møller OJ, Stibius M, Strange M, Su HB, Temel B, Toftelund A, Tripkovic V, Vanin M, Viswanathan V, Vojvodic A, Wang S, Wellendorff J, Thygesen KS, Rossmeisl J, Bligaard T, Jacobsen KW, Nørskov JK, Vegge T (2009) J Chem Phys 131(1):014101CrossRefGoogle Scholar
  181. 181.
    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495CrossRefGoogle Scholar
  182. 182.
    Mueller T, Hautier G, Jain A, Ceder G (2011) Chem Mater 23:3854CrossRefGoogle Scholar
  183. 183.
    Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sánchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849CrossRefGoogle Scholar
  184. 184.
    Wang S, Wang Z, Setyawan W, Mingo N, Curtarolo S (2011) Phys Rev X 1(2):1Google Scholar
  185. 185.
    Ortiz C, Eriksson O, Klintenberg M (2009) Comput Mater Sci 44(4):1042CrossRefGoogle Scholar
  186. 186.
    Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) ACS Comb Sci 13(4): 382Google Scholar
  187. 187.
    Castelli IE, Olsen T, Datta S, Landis DD, Dahl Sr, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5: 5814. doi: 10.1039/C1EE02717D
  188. 188. Accessed 15 March 2012
  189. 189. Accessed 15 March 2012
  190. 190. Accessed 15 March 2012

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Geoffroy Hautier
    • 1
    Email author
  • Anubhav Jain
    • 2
  • Shyue Ping Ong
    • 3
  1. 1.Institute of Condensed Matter and Nanosciences (IMCN)-Nanoscopic Physics (NAPS)Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations