Skip to main content

Advertisement

Log in

GGA+U method from first principles: application to reduction–oxidation properties in ceria-based oxides

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We implement DFT calculations by a Hubbard-like correction for localized strongly correlated electrons, coupled with a generalized gradient approximation to the exchange-correlation functional to elucidate the role of the ceria based catalytically active supports for the chemical reactions involving reduction–oxidation processes. These catalytic processes are relevant for many industrial applications, such as catalytic converters in automotive applications, solid oxide fuel cells, and hydrogen production from biomass. The Hubbard-like correction U is computed from first principles as physical property of the system. We find that the high performance of ceria-based oxides as an active support for noble metals in catalysis relies on an efficient supply of lattice oxygen at reaction sites governed by oxygen vacancy formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  2. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353

    Article  CAS  Google Scholar 

  3. Inaba H, Tagawa H (1996) Solid State Ion 83:1

    Article  CAS  Google Scholar 

  4. Burch R (2006) Phys Chem Chem Phys 8:5483. doi:10.1039/B607837K

    Article  CAS  Google Scholar 

  5. Qi F, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935. doi:10.1126/science.1085721

    Article  Google Scholar 

  6. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107. doi:10.1016/S0926-3373(97)00040-4

    Article  CAS  Google Scholar 

  7. Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel Cell Bull 30:7

    Article  Google Scholar 

  8. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  9. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179. doi:10.1016/S0926-3373(00)00147-8

    Article  Google Scholar 

  10. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  11. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757. doi:10.1126/science.1150038

    Article  CAS  Google Scholar 

  12. Jacobs G, Ricote S, Davis BH (2006) Appl Catal A 302:14. doi:10.1016/j.apcata.2005.10.052

    Article  CAS  Google Scholar 

  13. Gorte RJ, Zhao S (2005) Catal Today 104:18. doi:10.1016/j.cattod.2005.03.034

    Article  CAS  Google Scholar 

  14. Janak JF (1978) Phys Rev B 18:7165. doi:10.1103/PhysRevB.18.7165

    Article  CAS  Google Scholar 

  15. Perdew JP, Parr RG, Levy M, Balduz JM (1982) Phys Rev Lett 49:1691. doi:10.1103/PhysRevLett.49.1691

    Article  CAS  Google Scholar 

  16. Perdew JP, Levy M (1983) Phys Rev Lett 51:1884. doi:10.1103/PhysRevLett.51.1884

    Article  CAS  Google Scholar 

  17. Sham LJ, Schlüter M (1983) Phys Rev Lett 51:1888. doi:10.1103/PhysRevLett.51.1888

    Article  Google Scholar 

  18. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  19. Heyd J, Scuseria GE (2004) J Chem Phys 121:1187. doi:10.1063/1.1760074

    Article  CAS  Google Scholar 

  20. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906

    Article  Google Scholar 

  21. Liechtenstein AI, Anisimov VI, Zaane J (1995) Phys Rev B 52:R5467. doi:10.1103/PhysRevB.52.R5467

    Article  CAS  Google Scholar 

  22. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943. doi:10.1103/PhysRevB.44.943

    Article  CAS  Google Scholar 

  23. Anisimov VI, Aryasetiawan F, Liechtenstein AI (1997) J Phys Condens Matter 9:767. doi:10.1088/0953-8984/9/4/002

    Article  CAS  Google Scholar 

  24. Anisimov VI, Zaanen J, Anderson OK (1991) Phys Rev B 44:943. doi:10.1103/PhysRevB.44.943

    Article  CAS  Google Scholar 

  25. Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 71:041102(R)

    Article  Google Scholar 

  26. Kresse G, Blaha P, Da Silva JL, Ganduglia-Pirovano MV (2005) Phys Rev B 72:237101. doi:10.1103/PhysRevB.72.237101

    Article  Google Scholar 

  27. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217. doi:10.1016/j.susc.2004.12.016

    Article  CAS  Google Scholar 

  28. Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123:064701

    Article  Google Scholar 

  29. Zhang C, Michaelides A, King DA, Jenkins SJ (2008) J Chem Phys 129:194708

    Article  Google Scholar 

  30. Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704

    Article  CAS  Google Scholar 

  31. Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115. doi:10.1103/PhysRevB.75.035115

    Article  Google Scholar 

  32. Solovyev IV, Dederichs PH, Anisimov VI (1994) Phys Rev B 50:16861. doi:10.1103/PhysRevB.50.16861

    Article  CAS  Google Scholar 

  33. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105. doi:10.1103/PhysRevB.71.035105

    Article  Google Scholar 

  34. Anisimov VI, Gunnarsson O (1991) Phys Rev B 43:7570. doi:10.1103/PhysRevB.43.7570

    Article  CAS  Google Scholar 

  35. Hohenberg P, Kohn W (1964) Phys Rev 136:B864. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  36. Kohn W, Sham L (1965) Phys Rev 140:A1133. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  37. Bl¨ochl PE (1994) Phys Rev B 50:17953. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  38. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  39. Kresse G, Hafner J (1993) Phys Rev B 47:R558. doi:10.1103/PhysRevB.47.558

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  41. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505. doi:10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  42. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  43. Wuilloud E, Delley B, Schneider W-D, Baer Y (1984) Phys Rev Lett 53:202. doi:10.1103/PhysRevLett.53.202

    Article  CAS  Google Scholar 

  44. Prokofiev AV, Shelykh AI, Melekh BT (1996) J Alloys Compd 242:41. doi:10.1016/0925-8388(96)02293-1

    Article  CAS  Google Scholar 

  45. Pinto H, Mintz MH, Melamud M, Shaked H (2002) Phys Lett A 88:22. doi:10.1016/0375-9601(82)90596-5

    Google Scholar 

  46. Sørensen OT (1976) J Solid State Chem 18:217. doi:10.1016/0022-4596(76)90099-2

    Article  Google Scholar 

  47. Gasgnier M, Schiffmacher G, Caro P, Eyring L (1986) J Less-Common Metals 116:31. doi:10.1016/0022-5088(86)90214-6

    Article  CAS  Google Scholar 

  48. Bärnighausen H, Schiller GJ (1985) Less-Common Met 110:385. doi:10.1016/0022-5088(85)90347-9

    Article  Google Scholar 

  49. Gerwarda L, Olsenb JS, Petitc L, Vaitheeswarand G, Kanchanad V, Svanee A (2005) J Alloys Compd 400:56. doi:10.1016/j.jallcom.2005.04.008

    Article  Google Scholar 

  50. Duclos SJ, Vohra YK, Ruoff AL, Jayaraman A, Espinosa GP (1988) Phys Rev B 38:7755. doi:10.1103/PhysRevB.38.7755

    Article  CAS  Google Scholar 

  51. Gerward L, Olsen JS (1993) Powder Diffr 8:127

    CAS  Google Scholar 

  52. Murnaghan FD (1944) Proc Nat Acad Sci USA 30:244. doi:10.1073/pnas.30.9.244

    Article  CAS  Google Scholar 

  53. Birch F (1947) Phys Rev 71:809. doi:10.1103/PhysRev.71.809

    Article  CAS  Google Scholar 

  54. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Phys Rev Lett 102:126403. doi:10.1103/PhysRevLett.102.126403

    Article  Google Scholar 

  55. Yan GH et al (2010) In: Karl AG Jr, Jean-Claude B, Vitalij KP (eds) Handbook on the physics and chemistry of rare earths, vol 41. Elsevier Science B. V. Amsterdam, The Netherlands, p 310

  56. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307. doi:10.1016/S0039-6028(98)00257-X

    Article  CAS  Google Scholar 

  57. Tuller HL, Nowick AS (1979) J Electrochem Soc 126:209. doi:10.1149/1.2129007

    Article  CAS  Google Scholar 

  58. Chiang Y-M, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185

    Article  CAS  Google Scholar 

  59. Chiang YM, Lavik EB, Blom DA (1997) Nanostruct Mater 9:633. doi:10.1016/S0965-9773(97)00142-6

    Article  CAS  Google Scholar 

  60. Sugiura M (2003) Catal Surv Asia 7:77. doi:10.1023/A:1023488709527

    Article  CAS  Google Scholar 

  61. Esch F et al (2005) Science 309:752. doi:10.1126/science.1111568

    Article  CAS  Google Scholar 

  62. Nolan M, Fearon JE, Watson GW (2006) Solid State Ion 177:3069

    Article  CAS  Google Scholar 

  63. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217

    Article  CAS  Google Scholar 

  64. Yang Z, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120:7741. doi:10.1063/1.1688316

    Article  CAS  Google Scholar 

  65. Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102:026101. doi:10.1103/PhysRevLett.102.026101

    Article  Google Scholar 

  66. Azzam KG, Babich IV, Seshan L, Lefferts L (2007) J Catal 251:153. doi:10.1016/j.jcat.2007.07.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks M. Marsman and G. Kresse for help with linear response method implementation in VASP. The author acknowledges useful discussion with S. Emerson, T. Vanderspurt, R. Willigan and T. Davis. This material is based upon work supported by the Department of Energy under award number DE-FG36-05GO15042. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the office of Science of the Department of Energy under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amra Peles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peles, A. GGA+U method from first principles: application to reduction–oxidation properties in ceria-based oxides. J Mater Sci 47, 7542–7548 (2012). https://doi.org/10.1007/s10853-012-6423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6423-1

Keywords

Navigation