Alkali silicate binders: effect of SiO2/Na2O ratio and alkali metal ion type on the structure and mechanical properties

Abstract

The influence of SiO2:Na2O molar ratio and the nature of an alkali metal (Na vs. K) in commercial aqueous alkali silicate on the microstructure, textural properties, phase composition, and hydrolytic stability of an alkali silicate binder have been investigated using scanning electron microscopy, nitrogen adsorption/desorption technique, X-ray diffractometry, thermal analysis, and dissolution tests. It has been found that microstructure and textural properties of the alkali silicate binder depend both on silica to alkali molar ratio and type of alkali metal (Na vs. K). Sodium silicate binder obtained from commercial silicate solution with lower SiO2:Na2O molar ratio (2.2) exhibits a globular microstructure of silica xerogel with high content of micropores, whereas the binder formulated with SiO2:Na2O molar ratio 3.2 is characterized by more open cluster structure with lower content of micropores. It is observed that surface specific area estimated by Brunauer, Emmett, and Teller method and mesopore volume obtained by the Barrett–Joyner–Halenda method for sodium silicate binder are substantially higher than those for potassium silicate binder. The ultimate hydrolytic stability of the sodium silicate binder increases slightly with increase in the silica to alkali molar ratio within the studied range. Decreasing in SiO2:Na2O molar ratio and replacement of sodium silicate solution by potassium silicate solution in the corresponding filled composition lead to the improvement of mechanical properties and decrease in open porosity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Robertson JC (1845) Mech Mag 42:441

    Google Scholar 

  2. 2.

    Dimas D, Giannopoulou I, Panias D (2009) J Mater Sci 44:3719. doi:10.1007/s10853-009-3497-5

    Article  CAS  Google Scholar 

  3. 3.

    Bernal SA, Rodriguez ED, Mejia de Gutierrez R, Gordillo M, Provis JL (2011) J Mater Sci 46:5477. doi:10.1007/s10853-011-5490-z

    Article  CAS  Google Scholar 

  4. 4.

    Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi:10.1007/s10853-006-0820-2

    Article  CAS  Google Scholar 

  5. 5.

    Barabakdze V, Kozlov V, Mikulski V, Nikolov I (1995) Durability of building structures and constructions from composite materials., Russian Translations Series 109A.A. Balkema Publishers, Rotterdam

    Google Scholar 

  6. 6.

    O’Connor SJ, MacKenzie KJD (2010) J Mater Sci 45:3284. doi:10.1007/s10853-010-4340-8

    Article  Google Scholar 

  7. 7.

    John LP, Grant CL, Jannie van Deventer SL (2005) Chem Mater 17:3075. doi:10.1021/cm050230i

    Article  Google Scholar 

  8. 8.

    Korneev V, Danilov V (1996) Liquid and soluble glass. Construction Publishing, St. Petersburg (in Russian)

    Google Scholar 

  9. 9.

    Shi C (2004) US Patent No. 6749679 B2. US Patent Office, Washington, DC

    Google Scholar 

  10. 10.

    Beckwith WF (1996) US Patent No 3240736. US Patent Office, New Jersey

    Google Scholar 

  11. 11.

    Self JM, Taylor SC (1977) Patent No 4011195. US Patent Office, Pittsburg

    Google Scholar 

  12. 12.

    Tertre Y (1968) US Patent No 3392127. US Patent Office, Paris

    Google Scholar 

  13. 13.

    Iler R (1978) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  14. 14.

    Brinker J, Scherer G (1990) Sol–gel science the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  15. 15.

    Harris RK, Jones J, Knight CTG, Hewman RH (1984) J Mol Liq 29:63

    Article  CAS  Google Scholar 

  16. 16.

    Harris RK, O’Connor MJ, Curzon EH, Howart OW (1984) J Magn Res 57:115

    CAS  Google Scholar 

  17. 17.

    Pope EJ, Mackenzie JD (1986) J Non Cryst Solids 87:185

    Article  CAS  Google Scholar 

  18. 18.

    Bondar D, Lynsdale C, Milestone N, Nassani N, Ramezanianpour A (2011) J Cem Concr Compos 33:251

    Article  CAS  Google Scholar 

  19. 19.

    Alexander GB (1953) J Am Chem Soc 75:5655

    Article  CAS  Google Scholar 

  20. 20.

    British Standards Institution BS EN 12390-3 (2002) Testing of hardened concrete—compressive strength of test specimens. BSI, London

    Google Scholar 

  21. 21.

    Christopher H, William DH (2002) Water transport in brick, stone, and concrete. Taylor and Francis, New York

    Google Scholar 

  22. 22.

    Brinker CJ, Scherer GW (1985) J Non Cryst Solids 70:301

    Article  CAS  Google Scholar 

  23. 23.

    Jérôme F, Castetbona A, Trouveb G, Potin-Gautiera M (2006) Chem Phys Lett 427:356

    Article  Google Scholar 

  24. 24.

    Hench LL (1998) Sol–gel silica: properties, processing, and technology transfer. Noyes Publications, New Jersey

    Google Scholar 

  25. 25.

    Chotti P (1981) J Less Common Metals 80:105

    Article  Google Scholar 

  26. 26.

    Vanka M, Vachuska J (1980) Thermochim Acta 36:387

    Article  CAS  Google Scholar 

  27. 27.

    Chotti P (1981) J Less Common Metals 80:97

    Article  Google Scholar 

  28. 28.

    Freeman ES, Hogan VO (1964) Anal Chem 36:2337

    Article  CAS  Google Scholar 

  29. 29.

    Stodolski R, Kolditz L (1985) J Fluor Chem 29:73

    Article  Google Scholar 

  30. 30.

    Wijnen PW, Wijnen JG, Beelen TP, Haan JW, Rummens LJ, Santen RA (1989) J Non Cryst Solids 109:85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the professors Don Seo and Valery Putlyaev for useful discussions and to Dr. Anatoli Korkin for careful reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taisiya Skorina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skorina, T., Tikhomirova, I. Alkali silicate binders: effect of SiO2/Na2O ratio and alkali metal ion type on the structure and mechanical properties. J Mater Sci 47, 5050–5059 (2012). https://doi.org/10.1007/s10853-012-6382-6

Download citation

Keywords

  • Sodium Silicate
  • Open Porosity
  • Silicate Solution
  • Water Glass
  • Hydrolytic Stability