Journal of Materials Science

, Volume 47, Issue 12, pp 5050–5059 | Cite as

Alkali silicate binders: effect of SiO2/Na2O ratio and alkali metal ion type on the structure and mechanical properties

  • Taisiya SkorinaEmail author
  • Irina Tikhomirova


The influence of SiO2:Na2O molar ratio and the nature of an alkali metal (Na vs. K) in commercial aqueous alkali silicate on the microstructure, textural properties, phase composition, and hydrolytic stability of an alkali silicate binder have been investigated using scanning electron microscopy, nitrogen adsorption/desorption technique, X-ray diffractometry, thermal analysis, and dissolution tests. It has been found that microstructure and textural properties of the alkali silicate binder depend both on silica to alkali molar ratio and type of alkali metal (Na vs. K). Sodium silicate binder obtained from commercial silicate solution with lower SiO2:Na2O molar ratio (2.2) exhibits a globular microstructure of silica xerogel with high content of micropores, whereas the binder formulated with SiO2:Na2O molar ratio 3.2 is characterized by more open cluster structure with lower content of micropores. It is observed that surface specific area estimated by Brunauer, Emmett, and Teller method and mesopore volume obtained by the Barrett–Joyner–Halenda method for sodium silicate binder are substantially higher than those for potassium silicate binder. The ultimate hydrolytic stability of the sodium silicate binder increases slightly with increase in the silica to alkali molar ratio within the studied range. Decreasing in SiO2:Na2O molar ratio and replacement of sodium silicate solution by potassium silicate solution in the corresponding filled composition lead to the improvement of mechanical properties and decrease in open porosity.


Sodium Silicate Open Porosity Silicate Solution Water Glass Hydrolytic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to the professors Don Seo and Valery Putlyaev for useful discussions and to Dr. Anatoli Korkin for careful reading of the manuscript.


  1. 1.
    Robertson JC (1845) Mech Mag 42:441Google Scholar
  2. 2.
    Dimas D, Giannopoulou I, Panias D (2009) J Mater Sci 44:3719. doi: 10.1007/s10853-009-3497-5 CrossRefGoogle Scholar
  3. 3.
    Bernal SA, Rodriguez ED, Mejia de Gutierrez R, Gordillo M, Provis JL (2011) J Mater Sci 46:5477. doi: 10.1007/s10853-011-5490-z CrossRefGoogle Scholar
  4. 4.
    Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi: 10.1007/s10853-006-0820-2 CrossRefGoogle Scholar
  5. 5.
    Barabakdze V, Kozlov V, Mikulski V, Nikolov I (1995) Durability of building structures and constructions from composite materials., Russian Translations Series 109A.A. Balkema Publishers, RotterdamGoogle Scholar
  6. 6.
    O’Connor SJ, MacKenzie KJD (2010) J Mater Sci 45:3284. doi: 10.1007/s10853-010-4340-8 CrossRefGoogle Scholar
  7. 7.
    John LP, Grant CL, Jannie van Deventer SL (2005) Chem Mater 17:3075. doi: 10.1021/cm050230i CrossRefGoogle Scholar
  8. 8.
    Korneev V, Danilov V (1996) Liquid and soluble glass. Construction Publishing, St. Petersburg (in Russian)Google Scholar
  9. 9.
    Shi C (2004) US Patent No. 6749679 B2. US Patent Office, Washington, DCGoogle Scholar
  10. 10.
    Beckwith WF (1996) US Patent No 3240736. US Patent Office, New JerseyGoogle Scholar
  11. 11.
    Self JM, Taylor SC (1977) Patent No 4011195. US Patent Office, PittsburgGoogle Scholar
  12. 12.
    Tertre Y (1968) US Patent No 3392127. US Patent Office, ParisGoogle Scholar
  13. 13.
    Iler R (1978) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New YorkGoogle Scholar
  14. 14.
    Brinker J, Scherer G (1990) Sol–gel science the physics and chemistry of sol–gel processing. Academic Press, BostonGoogle Scholar
  15. 15.
    Harris RK, Jones J, Knight CTG, Hewman RH (1984) J Mol Liq 29:63CrossRefGoogle Scholar
  16. 16.
    Harris RK, O’Connor MJ, Curzon EH, Howart OW (1984) J Magn Res 57:115Google Scholar
  17. 17.
    Pope EJ, Mackenzie JD (1986) J Non Cryst Solids 87:185CrossRefGoogle Scholar
  18. 18.
    Bondar D, Lynsdale C, Milestone N, Nassani N, Ramezanianpour A (2011) J Cem Concr Compos 33:251CrossRefGoogle Scholar
  19. 19.
    Alexander GB (1953) J Am Chem Soc 75:5655CrossRefGoogle Scholar
  20. 20.
    British Standards Institution BS EN 12390-3 (2002) Testing of hardened concrete—compressive strength of test specimens. BSI, LondonGoogle Scholar
  21. 21.
    Christopher H, William DH (2002) Water transport in brick, stone, and concrete. Taylor and Francis, New YorkGoogle Scholar
  22. 22.
    Brinker CJ, Scherer GW (1985) J Non Cryst Solids 70:301CrossRefGoogle Scholar
  23. 23.
    Jérôme F, Castetbona A, Trouveb G, Potin-Gautiera M (2006) Chem Phys Lett 427:356CrossRefGoogle Scholar
  24. 24.
    Hench LL (1998) Sol–gel silica: properties, processing, and technology transfer. Noyes Publications, New JerseyGoogle Scholar
  25. 25.
    Chotti P (1981) J Less Common Metals 80:105CrossRefGoogle Scholar
  26. 26.
    Vanka M, Vachuska J (1980) Thermochim Acta 36:387CrossRefGoogle Scholar
  27. 27.
    Chotti P (1981) J Less Common Metals 80:97CrossRefGoogle Scholar
  28. 28.
    Freeman ES, Hogan VO (1964) Anal Chem 36:2337CrossRefGoogle Scholar
  29. 29.
    Stodolski R, Kolditz L (1985) J Fluor Chem 29:73CrossRefGoogle Scholar
  30. 30.
    Wijnen PW, Wijnen JG, Beelen TP, Haan JW, Rummens LJ, Santen RA (1989) J Non Cryst Solids 109:85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA
  2. 2.Department of General Technology of SilicatesD.I. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations