Skip to main content
Log in

Growth behavior of compounds due to solid-state reactive diffusion between Cu and Al

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To examine experimentally the kinetics of the reactive diffusion between solid-Cu and solid-Al, sandwich Al/Cu/Al diffusion couples were prepared by a diffusion-bonding technique and then isothermally annealed in the temperature range of T = 693–753 K for various times up to 336 h. Owing to annealing, compound layers of the γ 1, δ, ζ 2, η 2, and θ phases are formed between the Cu and Al specimens. The γ 1, δ, ζ 2, η 2, and θ phases are the only stable compounds at T = 693–753 K in the binary Cu–Al system. At each annealing time, the thickness of the θ phase is much greater than those of the δ, ζ 2, and η 2 phases but smaller than that of the γ 1 phase. Hence, the overall growth of the compound layers is governed by the γ 1 and θ phases. The mean thickness of each compound layer is proportional to a power function of the annealing time. For the γ 1 phase, the exponent m of the power function is 0.5 at T = 753 K. Such a relationship is called a parabolic relationship. As the annealing temperature T decreases, however, m gradually increases and then reaches to 0.66 at T = 693 K. On the other hand, for the θ phase, m is close to 0.5 at T = 723–753 K and becomes 0.42 at T = 693 K. In the γ 1 and θ phases, grain growth occurs at T = 693–753 K. Thus, the layer growth of the θ phase is controlled by volume diffusion at T = 723–753 K but partially by boundary diffusion at T = 693 K. On the other hand, for the γ 1 phase, volume diffusion is the rate-controlling process of the layer growth at T = 753 K, but interface reaction contributes to the rate-controlling process at T = 693–723 K. Consequently, the rate-controlling process varies depending on the annealing temperature in a different manner for each compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams, vol 1–3. ASM International, Materials Park, OH

    Google Scholar 

  2. Lustman B, Mehl RF (1942) Trans Met Soc AIME 147:369

    Google Scholar 

  3. Horstmann D (1953) Stahl Eisen 73:659

    CAS  Google Scholar 

  4. Storchheim S, Zambrow JL, Hausner HH (1954) Trans Met Soc AIME 200:269

    Google Scholar 

  5. Kidson GV, Miller GD (1964) J Nucl Mater 12:61

    Article  CAS  Google Scholar 

  6. Shibata K, Morozumi S, Koda S (1966) J Japan Inst Met 30:382

    CAS  Google Scholar 

  7. Hirano K, Ipposhi Y (1968) J Japan Inst Met 32:815

    CAS  Google Scholar 

  8. Funamizu Y, Watanabe K (1971) Trans JIM 12:147

    CAS  Google Scholar 

  9. Janssen MMP (1973) Metall Trans 4:1623

    CAS  Google Scholar 

  10. Bastin GF, Rieck GD (1974) Metall Trans 5:1817

    Article  CAS  Google Scholar 

  11. Onishi M, Fujibuchi H (1975) Trans JIM 16:539

    CAS  Google Scholar 

  12. Hannech EIB, Hall CR (1992) Mater Sci Tech 8:817

    Article  CAS  Google Scholar 

  13. Vianco PT, Hlava PF, Kilgo AL (1994) J Electron Mater 23:583

    Article  CAS  Google Scholar 

  14. Watanabe M, Horita Z, Nemoto M (1997) Interface Sci 4:229

    Article  Google Scholar 

  15. Choi S, Bieler TR, Lucas JP, Subramanian KN (1999) J Electron Mater 28:1209

    Article  CAS  Google Scholar 

  16. Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K (2004) J Mater Sci 39:2327. doi:10.1023/B:JMSC.0000019993.32079.c2

    Article  CAS  Google Scholar 

  17. Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 390:118

    Article  Google Scholar 

  18. Suzuki K, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Trans 46:969

    Article  CAS  Google Scholar 

  19. Mita M, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 403:269

    Article  Google Scholar 

  20. Takenaka T, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 396:115

    Article  Google Scholar 

  21. Naoi D, Kajihara M (2007) Mater Sci Eng A 459:375

    Article  Google Scholar 

  22. Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 406:134

    Article  Google Scholar 

  23. Takenaka T, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Trans 46:1825

    Article  CAS  Google Scholar 

  24. Mita M, Miura K, Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2006) Mater Sci Eng B 126:37

    Article  CAS  Google Scholar 

  25. Takenaka T, Kajihara M (2006) Mater Trans 47:822

    Article  CAS  Google Scholar 

  26. Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2006) Mater Sci Eng A 427:210

    Article  Google Scholar 

  27. Tanaka Y, Goto T, Watanabe Y (2005) Mater Sci Forum 492–493:737

    Article  Google Scholar 

  28. Yato Y, Kajihara M (2006) Mater Sci Eng A 428:276

    Article  Google Scholar 

  29. Tanaka Y, Kajihara M, Watanabe Y (2007) Mater Sci Eng A 445:355

    Article  Google Scholar 

  30. Muranishi Y, Kajihara M (2005) Mater Sci Eng A 404:33

    Article  Google Scholar 

  31. Hayase T, Kajihara M (2006) Mater Sci Eng A 433:83

    Article  Google Scholar 

  32. Mikami K, Kajihara M (2007) J Mater Sci 42:8178. doi:10.1007/s10853-007-1700-0

    Article  CAS  Google Scholar 

  33. Tejima Y, Nakamura S, Kajihara M (2010) J Mater Sci 45:919. doi:10.1007/s10853-009-4021-7

    Article  CAS  Google Scholar 

  34. Tanaka Y, Kajihara M (2010) J Mater Sci 45:5676. doi:10.1007/s10853-010-4633-y

    Article  CAS  Google Scholar 

  35. Kajihara M, Lim CB, Kikuchi M (1993) ISIJ Int 33:498

    Article  CAS  Google Scholar 

  36. Liu XJ, Ohnuma I, Kainuma R, Ishida K (1998) J Alloys Comp 264:201

    Article  CAS  Google Scholar 

  37. Corcoran YL, King AH, de Lanerolle N, Kim B (1990) J Electron Mater 19:1177

    Article  CAS  Google Scholar 

  38. Furuto A, Kajihara M (2008) Mater Trans 49:294

    Article  CAS  Google Scholar 

  39. Kajihara M (2004) Acta Mater 52:1193

    Article  CAS  Google Scholar 

  40. Kajihara M (2005) Mater Sci Eng A 403:234

    Article  Google Scholar 

  41. Kajihara M (2005) Mater Trans 46:2142

    Article  CAS  Google Scholar 

  42. Kajihara M (2006) Def Diff Forum 249:91

    Article  CAS  Google Scholar 

  43. Kajihara M (2006) Mater Trans 47:1480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kajihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meguro, K., O, M. & Kajihara, M. Growth behavior of compounds due to solid-state reactive diffusion between Cu and Al. J Mater Sci 47, 4955–4964 (2012). https://doi.org/10.1007/s10853-012-6370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6370-x

Keywords

Navigation