Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams

Abstract

Flexible polyurethane foams filled with a fixed amount of carbon-based nanofillers, in particular multiwall nanotubes and graphenes, have been studied to clarify the influence of the morphology and functional groups on the physical properties of these polymeric foams. The effect of the carbon nanoparticles on the microphase separation has been analyzed by FT-IR spectroscopy revealing a decrease in the degree of phase separation of the segments. Variations of the glass transition temperature and an improved thermal stability were observed due to the presence of the nanoparticles. The EMI shielding effectiveness of flexible PU foams has also been enhanced, in particular for FGS nanocomposite foams.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Tong XC (2009) Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press Taylor & Francis Group, Boca Raton, pp 215–236

  2. 2.

    Xu XB, Li ZM, Shi L, Bian XC, Xiang ZD (2007) Small 3(3):408. doi:10.1002/smll.200600348

    Article  CAS  Google Scholar 

  3. 3.

    Yan D-X, Dai K, Xiang Z-D, Li Z-M, Ji X, Zhang W-Q (2011) J Appl Polym Sci 120(5):3014. doi:10.1002/app.33437

    Article  CAS  Google Scholar 

  4. 4.

    Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) J Mater Chem 18(19):2221. doi:10.1039/b718289a

    Article  CAS  Google Scholar 

  5. 5.

    Harikrishnan G, Lindsay CI, Arunagirinathan MA, Macosko CW (2009) ACS Appl Mater Interface 1(9):1913. doi:10.1021/am9003123

    Article  CAS  Google Scholar 

  6. 6.

    Harikrishnan G, Singh SN, Kiesel E, Macosko CW (2010) Polymer 51(15):3349. doi:10.1016/j.polymer.2010.05.017

    Article  CAS  Google Scholar 

  7. 7.

    Bandarian M, Shojaei A, Rashidi AM (2011) Polym Int 60(3):475. doi:10.1002/pi.2971

    Article  CAS  Google Scholar 

  8. 8.

    Berta M, Lindsay C, Pans G, Camino G (2006) Polym Degrad Stab 91(5):1179. doi:10.1016/j.polymdegradstab.2005.05.027

    Article  CAS  Google Scholar 

  9. 9.

    Cao Y, Lai Z, Feng J, Wu P (2011) J Mater Chem 21(25):9271. doi:10.1039/C1JM10420A

    Article  CAS  Google Scholar 

  10. 10.

    Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Bruhwiler PA, Shaffer M (2009) Compos Sci Technol 69(10):1564. doi:10.1016/j.compscitech.2008.07.003

    Article  CAS  Google Scholar 

  11. 11.

    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Nano Lett 5(11):2131. doi:10.1021/nl051375r

    Article  CAS  Google Scholar 

  12. 12.

    Lee LJ, Zeng CC, Cao X, Han XM, Shen J, Xu GJ (2005) Compos Sci Technol 65(15–16):2344. doi:10.1016/j.compscitech.2005.06.016

    Article  CAS  Google Scholar 

  13. 13.

    Klempner D, Sendijarevic V (2004) Handbook of polymeric foams and foam technology. Hanser Publishers, Munich

    Google Scholar 

  14. 14.

    Verdejo R, Jell G, Safinia L, Bismarck A, Stevens MM, Shaffer MSP (2009) J Biomed Mater Res A 88A(1):65. doi:10.1002/Jbm.A.31698

    Article  CAS  Google Scholar 

  15. 15.

    Artavia LD, Macosko CW (1990) J Cell Plast 26(6):490. doi:10.1177/0021955x9002600602

    Article  Google Scholar 

  16. 16.

    Elwell MJ, Ryan AJ, Grunbauer HJM, VanLieshout HC (1996) Polymer 37(8):1353. doi:10.1016/0032-3861(96)81132-3

    Article  CAS  Google Scholar 

  17. 17.

    Creswick MW, Lee KD, Turner RB, Huber LM (1989) J Elastom Plast 21(3):179. doi:10.1177/00952443890210030418

    Article  CAS  Google Scholar 

  18. 18.

    Zammarano M, Kramer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Polym Adv Technol 19(6):588. doi:10.1002/pat.1111

    Article  CAS  Google Scholar 

  19. 19.

    Bernal MM, Lopez-Manchado MA, Verdejo R (2011) Macromol Chem Phys 212(9):971. doi:10.1002/macp.201000748

    Article  CAS  Google Scholar 

  20. 20.

    Singh C, Shaffer MS, Windle AH (2003) Carbon 41(2):359. doi:10.1016/S0008-6223(02)00314-7

    Article  CAS  Google Scholar 

  21. 21.

    Brodie BC (1859) Philos Trans R Soc Lond 149:249. doi:10.1098/rstl.1859.0013

    Article  Google Scholar 

  22. 22.

    Miller JA, Lin SB, Hwang KKS, Wu KS, Gibson PE, Cooper SL (1985) Macromolecules 18(1):32. doi:10.1021/ma00143a005

    Article  CAS  Google Scholar 

  23. 23.

    Tien YI, Wei KH (2001) Polymer 42(7):3213. doi:10.1016/S0032-3861(00)00729-1

    Article  CAS  Google Scholar 

  24. 24.

    Xia HS, Song M (2005) Soft Matter 1(5):386. doi:10.1039/b509038e

    Article  CAS  Google Scholar 

  25. 25.

    Seymour RW, Estes GM, Cooper SL (1970) Macromolecules 3(5):579. doi:10.1021/ma60017a021

    Article  Google Scholar 

  26. 26.

    Wang CB, Cooper SL (1983) Macromolecules 16(5):775. doi:10.1021/ma00239a014

    Article  CAS  Google Scholar 

  27. 27.

    Chen TK, Tien YI, Wei KH (2000) Polymer 41(4):1345. doi:10.1016/S0032-3861(99)00280-3

    Article  CAS  Google Scholar 

  28. 28.

    Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Macromolecules 44(11):4422. doi:10.1021/ma200318k

    Article  CAS  Google Scholar 

  29. 29.

    Chattopadhyay DK, Webster DC (2009) Prog Polym Sci 34(10):1068. doi:10.1016/j.progpolymsci.2009.06.002

    Article  CAS  Google Scholar 

  30. 30.

    Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Polym Degrad Stab 95(6):1138. doi:10.1016/j.polymdegradstab.2010.01.035

    Article  CAS  Google Scholar 

  31. 31.

    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) J Mater Chem 21(12):4222. doi:10.1039/C0JM03710A

    Article  CAS  Google Scholar 

  32. 32.

    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nano 3(6):327. doi:10.1038/nnano.2008.96

    Article  CAS  Google Scholar 

  33. 33.

    Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Polym Compos 32(10):1483. doi:10.1002/pc.21106

    Article  CAS  Google Scholar 

  34. 34.

    Thomassin JM, Huynen I, Jerome R, Detrembleur C (2010) Polymer 51(1):115. doi:10.1016/j.polymer.2009.11.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation (MICINN) through MAT 2010-18749 and MAT 2009-14001 CO2-01 and the 7th Framework Program of E.U. through HARCANA (NMP3-LA-2008-213277). MMB and SE also acknowledge the FPI and FPU programs from MICINN, respectively. I.H. is Research Director of the Research Science Foundation (FRS-FNRS), Belgium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raquel Verdejo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernal, M.M., Molenberg, I., Estravis, S. et al. Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J Mater Sci 47, 5673–5679 (2012). https://doi.org/10.1007/s10853-012-6331-4

Download citation

Keywords

  • Foam
  • Hard Segment
  • Soft Segment
  • Polymer Foam
  • Functionalized Graphene Sheet