Journal of Materials Science

, Volume 47, Issue 15, pp 5673–5679 | Cite as

Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams

  • M. Mar Bernal
  • Isabel Molenberg
  • Sergio Estravis
  • Miguel Angel Rodriguez-Perez
  • Isabelle Huynen
  • Miguel Angel Lopez-Manchado
  • Raquel VerdejoEmail author
Syntactic & Composite Foams


Flexible polyurethane foams filled with a fixed amount of carbon-based nanofillers, in particular multiwall nanotubes and graphenes, have been studied to clarify the influence of the morphology and functional groups on the physical properties of these polymeric foams. The effect of the carbon nanoparticles on the microphase separation has been analyzed by FT-IR spectroscopy revealing a decrease in the degree of phase separation of the segments. Variations of the glass transition temperature and an improved thermal stability were observed due to the presence of the nanoparticles. The EMI shielding effectiveness of flexible PU foams has also been enhanced, in particular for FGS nanocomposite foams.


Foam Hard Segment Soft Segment Polymer Foam Functionalized Graphene Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation (MICINN) through MAT 2010-18749 and MAT 2009-14001 CO2-01 and the 7th Framework Program of E.U. through HARCANA (NMP3-LA-2008-213277). MMB and SE also acknowledge the FPI and FPU programs from MICINN, respectively. I.H. is Research Director of the Research Science Foundation (FRS-FNRS), Belgium.


  1. 1.
    Tong XC (2009) Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press Taylor & Francis Group, Boca Raton, pp 215–236Google Scholar
  2. 2.
    Xu XB, Li ZM, Shi L, Bian XC, Xiang ZD (2007) Small 3(3):408. doi: 10.1002/smll.200600348 CrossRefGoogle Scholar
  3. 3.
    Yan D-X, Dai K, Xiang Z-D, Li Z-M, Ji X, Zhang W-Q (2011) J Appl Polym Sci 120(5):3014. doi: 10.1002/app.33437 CrossRefGoogle Scholar
  4. 4.
    Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) J Mater Chem 18(19):2221. doi: 10.1039/b718289a CrossRefGoogle Scholar
  5. 5.
    Harikrishnan G, Lindsay CI, Arunagirinathan MA, Macosko CW (2009) ACS Appl Mater Interface 1(9):1913. doi: 10.1021/am9003123 CrossRefGoogle Scholar
  6. 6.
    Harikrishnan G, Singh SN, Kiesel E, Macosko CW (2010) Polymer 51(15):3349. doi: 10.1016/j.polymer.2010.05.017 CrossRefGoogle Scholar
  7. 7.
    Bandarian M, Shojaei A, Rashidi AM (2011) Polym Int 60(3):475. doi: 10.1002/pi.2971 CrossRefGoogle Scholar
  8. 8.
    Berta M, Lindsay C, Pans G, Camino G (2006) Polym Degrad Stab 91(5):1179. doi: 10.1016/j.polymdegradstab.2005.05.027 CrossRefGoogle Scholar
  9. 9.
    Cao Y, Lai Z, Feng J, Wu P (2011) J Mater Chem 21(25):9271. doi: 10.1039/C1JM10420A CrossRefGoogle Scholar
  10. 10.
    Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Bruhwiler PA, Shaffer M (2009) Compos Sci Technol 69(10):1564. doi: 10.1016/j.compscitech.2008.07.003 CrossRefGoogle Scholar
  11. 11.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Nano Lett 5(11):2131. doi: 10.1021/nl051375r CrossRefGoogle Scholar
  12. 12.
    Lee LJ, Zeng CC, Cao X, Han XM, Shen J, Xu GJ (2005) Compos Sci Technol 65(15–16):2344. doi: 10.1016/j.compscitech.2005.06.016 CrossRefGoogle Scholar
  13. 13.
    Klempner D, Sendijarevic V (2004) Handbook of polymeric foams and foam technology. Hanser Publishers, MunichGoogle Scholar
  14. 14.
    Verdejo R, Jell G, Safinia L, Bismarck A, Stevens MM, Shaffer MSP (2009) J Biomed Mater Res A 88A(1):65. doi: 10.1002/Jbm.A.31698 CrossRefGoogle Scholar
  15. 15.
    Artavia LD, Macosko CW (1990) J Cell Plast 26(6):490. doi: 10.1177/0021955x9002600602 CrossRefGoogle Scholar
  16. 16.
    Elwell MJ, Ryan AJ, Grunbauer HJM, VanLieshout HC (1996) Polymer 37(8):1353. doi: 10.1016/0032-3861(96)81132-3 CrossRefGoogle Scholar
  17. 17.
    Creswick MW, Lee KD, Turner RB, Huber LM (1989) J Elastom Plast 21(3):179. doi: 10.1177/00952443890210030418 CrossRefGoogle Scholar
  18. 18.
    Zammarano M, Kramer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Polym Adv Technol 19(6):588. doi: 10.1002/pat.1111 CrossRefGoogle Scholar
  19. 19.
    Bernal MM, Lopez-Manchado MA, Verdejo R (2011) Macromol Chem Phys 212(9):971. doi: 10.1002/macp.201000748 CrossRefGoogle Scholar
  20. 20.
    Singh C, Shaffer MS, Windle AH (2003) Carbon 41(2):359. doi: 10.1016/S0008-6223(02)00314-7 CrossRefGoogle Scholar
  21. 21.
    Brodie BC (1859) Philos Trans R Soc Lond 149:249. doi: 10.1098/rstl.1859.0013 CrossRefGoogle Scholar
  22. 22.
    Miller JA, Lin SB, Hwang KKS, Wu KS, Gibson PE, Cooper SL (1985) Macromolecules 18(1):32. doi: 10.1021/ma00143a005 CrossRefGoogle Scholar
  23. 23.
    Tien YI, Wei KH (2001) Polymer 42(7):3213. doi: 10.1016/S0032-3861(00)00729-1 CrossRefGoogle Scholar
  24. 24.
    Xia HS, Song M (2005) Soft Matter 1(5):386. doi: 10.1039/b509038e CrossRefGoogle Scholar
  25. 25.
    Seymour RW, Estes GM, Cooper SL (1970) Macromolecules 3(5):579. doi: 10.1021/ma60017a021 CrossRefGoogle Scholar
  26. 26.
    Wang CB, Cooper SL (1983) Macromolecules 16(5):775. doi: 10.1021/ma00239a014 CrossRefGoogle Scholar
  27. 27.
    Chen TK, Tien YI, Wei KH (2000) Polymer 41(4):1345. doi: 10.1016/S0032-3861(99)00280-3 CrossRefGoogle Scholar
  28. 28.
    Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Macromolecules 44(11):4422. doi: 10.1021/ma200318k CrossRefGoogle Scholar
  29. 29.
    Chattopadhyay DK, Webster DC (2009) Prog Polym Sci 34(10):1068. doi: 10.1016/j.progpolymsci.2009.06.002 CrossRefGoogle Scholar
  30. 30.
    Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Polym Degrad Stab 95(6):1138. doi: 10.1016/j.polymdegradstab.2010.01.035 CrossRefGoogle Scholar
  31. 31.
    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) J Mater Chem 21(12):4222. doi: 10.1039/C0JM03710A CrossRefGoogle Scholar
  32. 32.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nano 3(6):327. doi: 10.1038/nnano.2008.96 CrossRefGoogle Scholar
  33. 33.
    Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Polym Compos 32(10):1483. doi: 10.1002/pc.21106 CrossRefGoogle Scholar
  34. 34.
    Thomassin JM, Huynen I, Jerome R, Detrembleur C (2010) Polymer 51(1):115. doi: 10.1016/j.polymer.2009.11.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Mar Bernal
    • 1
  • Isabel Molenberg
    • 2
  • Sergio Estravis
    • 3
  • Miguel Angel Rodriguez-Perez
    • 3
  • Isabelle Huynen
    • 2
  • Miguel Angel Lopez-Manchado
    • 1
  • Raquel Verdejo
    • 1
    Email author
  1. 1.Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)MadridSpain
  2. 2.Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave LaboratoryUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Cellular Materials Laboratory (CellMat), Condensed Matter Physics DepartmentUniversity of ValladolidValladolidSpain

Personalised recommendations