Skip to main content
Log in

Nanocrystalline nickel dispersed with nano-size WO3 particles synthesized by electrodeposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new class of bulk nanocrystalline nickel dispersed with nano-scale WO3 particles has been synthesized by conventional electrodeposition to clarify the effect of the presence of nano-size dispersions on the strength and thermal stability of nanocrystalline structures. It was found that WO3 particles of an initial size of 0.1 μm, when suspended in an electrolyte, fragmented into smaller nano-size particles, and were embedded into nanocrystalline nickel matrix of an average grain size of 45 nm during deposition. X-ray diffraction and transmission electron microscopy analyses revealed that phase transition of WO3 particles occurred from an initial monoclinic to a tetragonal structure. The cause-and-effect relation between the fragmentation and the phase transition of WO3 particles was discussed. Further hardening was confirmed in comparison with nanocrystalline pure nickel, but its increment was less than that predicted by the classical Orowan-type hardening of the particle–dislocation interaction. The discrepancy may be associated with a different dominant deformation mode which operates in a nanocrystalline regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Morris DG, Morris MA (1991) Acta Mater 39:1763

    Article  CAS  Google Scholar 

  2. Scattergood RO, Koch CC, Murty KL, Brenner D (2008) Mater Sci Eng A 493:3

    Article  Google Scholar 

  3. Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Metall Mater Trans A 39:2528

    Article  Google Scholar 

  4. Han BQ, Mohamed FA, Lavernia EJ (2003) J Mater Sci 38:3319. doi:10.1023/A:102515040795

    Article  CAS  Google Scholar 

  5. Srinivasan D, Corderman R, Subramanian PR (2006) Mater Sci Eng A 416:211

    Article  Google Scholar 

  6. Shao I, Vereecken PM, Chien CL, Searson PC, Cammarata RC (2002) J Mater Res 17:1412

    Article  CAS  Google Scholar 

  7. Hou F, Wang W, Guo H (2006) Appl Surf Sci 252:3812

    Article  CAS  Google Scholar 

  8. Klement U, Erb U, El-Sherik AM, Aust KT (1995) Mater Sci Eng 203:177

    Article  Google Scholar 

  9. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43:7264. doi:10.1007/s10853-008-2870-0

    Article  CAS  Google Scholar 

  10. Wilde G, Rosner H (2007) J Mater Sci 42:1772. doi:10.1007/s10853-006-0986-7

    Article  CAS  Google Scholar 

  11. Zener C (1948) Trans AIME 15:175

    Google Scholar 

  12. Horita Z, Ohashi K, Fujita T, Kaneko Y, Langdon TG (2005) Adv Mater 17:1599

    Article  CAS  Google Scholar 

  13. Kim JK, Jeong HG, Hong SI, Kim YS, Kim WJ (2001) Scr Mater 45:901

    Article  CAS  Google Scholar 

  14. Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Mater Sci Eng A 527:305

    Article  Google Scholar 

  15. Balazsi C, Gillemot F, Horvath M, Weber F, Balazsi K, Sahin FC, Onuralp Y, Horvath A (2011) J Mater Sci 46:4598. doi:10.1007/s10853-011-5359-1

    Article  CAS  Google Scholar 

  16. Erb U (1995) Can Metall Q 34:275

    Article  Google Scholar 

  17. El-Sherik AM, Erb U (1995) J Mater Sci 30:5743. doi:10.1007/BF00356715

    Article  CAS  Google Scholar 

  18. Hu F, Chan KC, Qu NS (2007) J Solid State Electrochem 11:262

    Google Scholar 

  19. Jung A, Natter H, Hempelmann R, Lach E (2009) J Mater Sci 44:2725. doi:10.1007/s10853-009-3330-1

    Article  CAS  Google Scholar 

  20. Li J, Sun Y, Sun X, Qiao J (2005) Surf Coat Tech 192:331

    Article  CAS  Google Scholar 

  21. Miyamoto H, Ueda K, Uenoya T (2010) Mater Sci Forum 654–656:1162

    Article  Google Scholar 

  22. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Adv Funct Mater 21:2175

    Article  CAS  Google Scholar 

  23. Vogt T, Woodward PM, Hunter BA (1999) J Solid State Chem 144:209

    Article  CAS  Google Scholar 

  24. Mohammad AA (2009) Acta Phys Polonica A 116:240

    Google Scholar 

  25. Boulova M, Lucazeau G (2002) J Solid State Chem 167:425

    CAS  Google Scholar 

  26. Clarke DR, Sergo V, He M-Y (1999) Elev Temp Coat Sci Tech 3:67

    Google Scholar 

  27. Qin W, Nam C, Li HL, Szpunar JA (2007) Acta Mater 55:1695

    Article  CAS  Google Scholar 

  28. Ohnishi H, Naka H, Sekino T, Ikuhara Y, Niihara K (2008) J Ceram Soc Jpn 116:491

    Article  CAS  Google Scholar 

  29. Zhang HB, Zhou YC, Bao YW, Wang JY (2006) J Mater Res 21:402

    Article  CAS  Google Scholar 

  30. Lafarga D, Lafuente A, Menendez M, Santamaria J (1998) J Mem Sci 147:173

    Article  CAS  Google Scholar 

  31. EL-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Scr Met Mater 27:1185

    Article  CAS  Google Scholar 

  32. Kocks UF (1966) Phil Mag 13:541

    Article  Google Scholar 

  33. Kumar KS, VanSwygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  34. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Science 300:1275

    Article  CAS  Google Scholar 

  35. Liao XZ, Zhao YH, Srinivasan R, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  36. Zhu YT, Liao XZ (2004) Nat Mater 3:351

    Article  CAS  Google Scholar 

  37. Wu X, Ma E, Zhu YT (2007) J Mater Sci 42:1427. doi:10.1007/s10853-006-1229-7

    Article  CAS  Google Scholar 

  38. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scr Metal 23:1679

    Article  CAS  Google Scholar 

  39. Chinh NQ, Szommer P, Horita Z, Langdon TG (2006) Adv Mater 18:34

    Article  CAS  Google Scholar 

  40. Wang N, Wang ZR, Aust KT, Erb U (1997) Mater Sci Eng 237:150

    Article  Google Scholar 

  41. Trusov LI, Khvostantseva TP, Solovev VA, Melnikova VA (1995) J Mater Sci 30:2956. doi:10.1007/BF00349669

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by a Grant-in-Aid for Scientific Research on Innovative Areas “Bulk nano metals,” MEXT Japan, as well as the helpful discussions with Professor Uwe Erb of the University of Toronto and Associate professor Atsutomo Nakamura of Osaka City University. The authors would like to express sincere gratitude to Professor Masaki Kato of Doshisha University for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Takehara, S., Uenoya, T. et al. Nanocrystalline nickel dispersed with nano-size WO3 particles synthesized by electrodeposition. J Mater Sci 47, 4798–4804 (2012). https://doi.org/10.1007/s10853-012-6322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6322-5

Keywords

Navigation