Abstract
Graphene oxides (GOs) with large sheets and more perfect aromatic structure were prepared by a novel modified Hummers method. We demonstrated that the graphite did not need to be oxidized to such a deep degree as described in Hummers method because the space distance increased little when the oxidation proceeded to a certain extent and the obtained graphite oxides (GTOs) could be fully exfoliated to single layers with high thermal stability. The oxidation mechanism and chemical structure model of GO were proposed by analyzing the evolution of the functional groups with oxidation proceeded based on thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The layer spacing calculated by molecular dynamics simulations coincided with the X-ray diffraction results. Furthermore, the size distribution and thickness of GOs were also studied. The results confirmed that the GOs prepared by the modified method were fully exfoliated to uniform single layers, and this method may be important for efficient exfoliation of GTO to GO and large-scale production of graphene.
This is a preview of subscription content, access via your institution.









References
Liang M, Zhi L (2009) J Mater Chem 19:5871
Geim AK (2009) Science 324:1530
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666
Chen X, He Y, Zhang Q, Li L, Hu D, Yin T (2010) J Mater Sci 45:953. doi:10.1007/s10853-009-4025-3
Liu Y, Chen Z, Yang G (2011) J Mater Sci 46:882. doi:10.1007/s10853-010-4829-1
Zhang Y, Pan C (2011) J Mater Sci 46:2622. doi:10.1007/s10853-010-5116-x
Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771
Wang Y, Xie L, Sha J, Ma Y, Han J, Dong S, Liu H, Fang C, Gong S, Wu Z (2011) J Mater Sci 46:3611. doi:10.1007/s10853-011-5277-2
Yoon S, In I (2011) J Mater Sci 46:1316. doi:10.1007/s10853-010-4917-2
Brodie BC (1859) Philos Trans R Soc London 149:249
Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481
Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339
Su C, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C, Huang Y, Li L (2010) ACS Nano 4:5285
Zhang L, Li X, Huang Y, Ma YF, Wan XJ, Chen YS (2010) Carbon 48:2367
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806
Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos TD, Chhowalla M et al (2011) J Mater Chem 21:11217
Ang PK, Wang S, Bao Q, Thong JTL, Loh KP (2009) ACS Nano 3:3587
Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477
Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547
Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740
Rafiq R, Cai DY, Jin J, Song M (2010) Carbon 48:4309
Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Electrochim Acta 55:3909
Szabo T, Berkesi O, Dekany I (2005) Carbon 43:3186
Hontorialucas C, Lopezpeinado AJ, Lopezgonzalez JDD, Rojascervantes ML, Martinaranda RM (1995) Carbon 33:1585
Si Y, Samulski ET (2008) Nano Lett 8:1679
Murugan AV, Muraliganth T, Manthiram A (2009) Chem Mater 21:5004
Jeong H, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Chem Phys Lett 470:255
Yue ZR, Jiang W, Wang L, Gardner SD, Pittman JCU (1999) Carbon 37:1785
Gardner SD, Singamsetty CSK, Booth GL, He G, Pittman CU (1995) Carbon 33:587
Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2007) Nano Lett 8:36
Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499
Nakajima T, Mabuchi A, Hagiwara R (1988) Carbon 26:357
Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Chem Mater 21:3514
Geng Y, Wang SJ, Kim JK (2009) J Colloid Interface Sci 336:592
Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi:10.1007/s10853-011-5260-y
Chen C, Yang Q, Yang Y, Lv W, Wen Y, Hou P, Wang M, Cheng H (2009) Adv Mater 21:3007
Stankovich S, Dikin DA, Dommett G, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282
Acknowledgements
The financial support of this work by the National Basic Research Program of China (“973 Program”, Grant Nos.: 2011CB605602 and 2011CB605603) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shao, G., Lu, Y., Wu, F. et al. Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47, 4400–4409 (2012). https://doi.org/10.1007/s10853-012-6294-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-012-6294-5
Keywords
- Graphene Oxide
- Graphene Sheet
- COOH Group
- Phenolic Group
- Layer Spacing