Skip to main content
Log in

Investigation on the competing effects of clay dispersion and matrix plasticisation for polypropylene/clay nanocomposites. Part I: morphology and mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The key compatibiliser role of maleated polypropylene (MAPP) to improve the clay dispersability has been explicitly addressed in the fabrication process and material characterisation of polypropylene (PP)/clay nanocomposites. However, its matrix plasticiser role, which has been rarely mentioned, could adversely influence the excellent mechanical properties of such nanocomposites, resulting from the homogeneous clay dispersion. PP/clay nanocomposites in the presence of MAPP were prepared by twin screw extrusion and subsequently injection moulded with three typical material formulations in fixed parametric settings: (1) weight ratio (WR) of clay and MAPP, WR = 1:2; (2) MAPP content of 6 wt% and (3) clay content of 5 wt%. The morphological structures and mechanical properties of PP/clay nanocomposites were examined by using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and universal mechanical testing. The further improvement of mechanical properties was evidently hindered with very inconsiderable alteration of morphological structures in terms of the clay dispersion level. This observation could be ascribed to the change of MAPP role from a compatibiliser to a plasticiser because of its excessive amount used above a certain saturation level, which was found in the range of 3–6 wt% in MAPP contents for the enhancements of tensile and flexural properties of PP/clay nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) In: Schaefer DW, Mark JE (eds) Polymer based molecular composites, vol 171. MRS Symposium Proceedings, Pittsburgh, p 45

  2. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  3. Giannelis EP (1998) Appl Organomet Chem 12:675

    Article  CAS  Google Scholar 

  4. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    Article  CAS  Google Scholar 

  5. Messersmith PB, Giannelis EP (1995) J Polym Sci Part A 33:1047

    Article  CAS  Google Scholar 

  6. Gilman JW (1999) Appl Clay Sci 15:31

    Article  CAS  Google Scholar 

  7. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Appl Clay Sci 15:67

    Article  CAS  Google Scholar 

  8. Oya A (2000) In: Pinnavaia TJ, Beall GW (eds) Polymer-clay nanocomposites. Wiley, New York, p 151

    Google Scholar 

  9. Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87

    Article  CAS  Google Scholar 

  10. Lee EC, Mielewski DF, Baird RJ (2004) Polym Eng Sci 44:1773

    Article  CAS  Google Scholar 

  11. Chow WS, Mohd Ishak ZA, Karger-Kocsis J, Apostolov AA, Ishiaku US (2003) Polymer 44:7427

    Article  CAS  Google Scholar 

  12. Dong Y, Bhattacharyya D (2008) Compos Part A 39:1177

    Article  Google Scholar 

  13. Gicía-López D, Picazo O, Merino JC, Pastor JM (2003) Eur Polym J 39:945

    Article  Google Scholar 

  14. Dong Y, Bhattacharyya D, Hunter PJ (2008) Compos Sci Technol 68:2864

    Article  CAS  Google Scholar 

  15. Fornes TD, Paul DR (2003) Polymer 44:4993

    Article  CAS  Google Scholar 

  16. Wee JW, Lim YT, Park OO (2000) Polym Bull 45:191

    Article  Google Scholar 

  17. Mittal V (2007) J Thermoplast Compos Mater 20:575

    Article  CAS  Google Scholar 

  18. Lee H, Fasulo PD, Rodgers WR, Paul DR (2005) Polymer 46:11673

    Article  CAS  Google Scholar 

  19. Morgan AB, Gilman JW (2003) J Appl Polym Sci 87:1329

    Article  CAS  Google Scholar 

  20. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  21. Chow WS, Bakar AA, Mohd Ishak ZA, Karger-Kocsis J, Ishiaku US (2005) Eur Polym J 41:687

    Article  CAS  Google Scholar 

  22. Sathe SN, Rao GSS, Rao KV, Devi S (1996) Polym Eng Sci 36:2443

    Article  CAS  Google Scholar 

  23. Sathe SN, Devi S, Rao GSS, Rao KV (1996) J Appl Polym Sci 61:97

    Article  CAS  Google Scholar 

  24. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48:5308

    Article  CAS  Google Scholar 

  25. Osman MA, Rupp JEP (2005) Macromol Rapid Commun 26:880

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge research financial supports from the Tertiary Education Commission (TEC), New Zealand to Dr. Yu Dong through Bright Future Top Achiever Doctoral Scholarship and the Foundation for Research, Science and Technology (FRST funding # UOAX 0406), New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Bhattacharyya, D. Investigation on the competing effects of clay dispersion and matrix plasticisation for polypropylene/clay nanocomposites. Part I: morphology and mechanical properties. J Mater Sci 47, 3900–3912 (2012). https://doi.org/10.1007/s10853-012-6248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6248-y

Keywords

Navigation