Skip to main content
Log in

Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report here a novel and simple buckling-based multiscale patterning of negative photoresist films which were subsequently pyrolyzed to yield complex micro-patterned carbon surfaces. Unlike other polymers, the use of a photoresist layer allows the overall pattern definition by photolithography on which the geometry and length scale of the buckling-instability are superimposed. The photoresist film swells anisotropically during developing and buckles after subsequent drying due to the difference in the shrinkage of the hard cross-linked layer on top of a softer native pre-polymer. We studied the conditions for the formation of a wide variety of complex, fractal buckling patterns as well as directionally aligned zigzag patterns over a large area. For example, the buckling diminished for the films below a critical thickness and after a prolonged UV exposure, both of which eliminate the softer under-layer. These patterned carbon substrates are also shown to be biocompatible for the cellular adhesion and viability by using L929 mouse fibroblast cells, thus indicating their potential use in bio-MEMS platforms with a conductive substrate. The buckled carbon patterns were found to be a better choice of a substrate for cell growth and viability as compared to flat and simply periodic patterned carbon surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Genzer J, Groenewold J (2006) Soft Matter 2:310

    Article  CAS  Google Scholar 

  2. Bowden N, Brittain S, Evans A, Hutchinson J, Whitesides GM (1998) Nature 93:146

    Google Scholar 

  3. Sultan E, Boudaoud A (2008) J Appl Mech 75:051002

    Article  Google Scholar 

  4. Lankford J (1995) J Mater Sci 30:4343. doi:10.1007/BF00361515

    Article  CAS  Google Scholar 

  5. Hyun DC, Moon GD, Park CJ, Kim BS, Xia Y, Jeong U (2010) Adv Mater 22:2642

    Article  CAS  Google Scholar 

  6. Bowden N, Huck WT, Paul KE, Whitesides GM (1999) Appl Phy Lett 75:2557

    Article  CAS  Google Scholar 

  7. Amis E, Karim A, Stafford CM, Harrison C, Beers KL, VanLandingham MR, Kim H, Volksen W, Miller RD, Simonyi EE (2004) Nat Mater 3:545

    Article  Google Scholar 

  8. Fasolka MJ, Wilder EA, Lin-Gibson S, Guo S, Stafford CM (2006) Macromolecules 39:4138

    Article  Google Scholar 

  9. Wang C, Madou M (2005) Biosens Bioelectron 20:2181

    Article  CAS  Google Scholar 

  10. Madou MJ (2002) The science of miniaturization, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  11. Schueller OJ, Brittain ST, Whitesides GM (1997) Adv Mater 9:477

    Article  CAS  Google Scholar 

  12. Ranganathan S, Mccreery R, Majji SM, Madou MJ (2000) Electrochem Soc 147:277

    Article  CAS  Google Scholar 

  13. Wang C, Zaouk R, Park B, Madou M (2008) Int J Manuf Tech Manag 13:360

    Article  Google Scholar 

  14. Wang C, Jia G, Taherabadi LH, Madou MJ (2005) J MEMS 14:348

    Google Scholar 

  15. Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, Dunn B (2004) Electrochem Solid State Lett 7:A435

    Article  CAS  Google Scholar 

  16. Teixidor GT, Gorkin RA, Tripathi PP, Bisht GS, Kulkarni M, Maiti TK, Battcharyya TK, Subramaniam JR, Sharma A, Park BY, Madou M (2008) Biomed Mater 3:034116

    Article  Google Scholar 

  17. Louise PC (1999) Curr Bio 9:1095

    Article  Google Scholar 

  18. Mosmann TJ (1983) Immunol Methods 65:55

    Article  CAS  Google Scholar 

  19. Lee J, Chu BH, Chen K, Ren F, Lele TP (2009) Biomaterials 30:4488

    Article  CAS  Google Scholar 

  20. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) Acta Biomater. doi:10.1016/j.actbio.2010.04.001

  21. Pennacchi M, Armentano I, Zeppetelli S, Fiorillo M, Guarnieri D, Kenny JM, Netti PA (2004) Eur Cell Mater 7:77

    Google Scholar 

  22. Petreaca MM (2008) In: Atala A, Lanza R, Thomsan JA, Nerem R (eds) Principles of regenerative medicine, 5th edn, Academic Press, p 66

  23. Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Garland Science Group, 4th edn. Taylor and Francis, New York

    Google Scholar 

  24. Misra A, Pei ZLR, Wu Z, Thirumaran T (2007) Biomed Biophys Comm 364:908

    Article  CAS  Google Scholar 

  25. Detrait E, Lhoest JB, Knoops B, Bertrand P, Aguilar PVB (1998) J Neurosci Methods 84:193

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by the DST Unit of Excellence on Soft Nanofabrication, IIT Kanpur, and by an IRHPA grant from the DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, M.M., Sharma, C.S., Sharma, A. et al. Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility. J Mater Sci 47, 3867–3875 (2012). https://doi.org/10.1007/s10853-011-6242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6242-9

Keywords

Navigation