Skip to main content
Log in

Microstructure evolution of Mg-3%Al-1%Zn alloy tube during warm bending

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure evolution and deformation mechanisms of AZ31 magnesium alloy tubes during bending have been investigated. Dislocation slip appears to be the main deformation mechanism, along with a few {10–12} [−1011] extension twins at the outer bend radius which undergoes tensile deformation. In contrast, the material in the tube wall at the inner bend radius of the tube, which undergoes compression, deforms mainly by extension twinning. This understanding of deformation mechanisms has explain the optimum bending temperature of 150–200 °C for the AZ31 tubes where both slip and twinning are active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Mater Sci Eng A 302:37

    Article  Google Scholar 

  2. A.A. Luo (2005) Journal of Materials and Manufacturing (SAE, Warrendale, PA, U.S.A, 2005): 411–421

  3. Luo AA (2002) J Met 54(2):42

    CAS  Google Scholar 

  4. Luo AA, Sachdev AK (2004) Magnesium technology. The Minerals Metals and Materials Society, Warrendale, p 79

    Google Scholar 

  5. Yang J, Jeon B, Oh S (2001) J Mater Process Technol 111:175

    Article  Google Scholar 

  6. Agnew SR, Duygulu Ö (2005) Int J Plasticity 21:161

    Article  Google Scholar 

  7. Yi SB, Zaefferer S, Brokmeier H-G (2006) Mater Sci Eng A 424:275

    Article  Google Scholar 

  8. A.A. Luo, A.K. Sachdev (2005) Materials Science Forum :488–489

  9. Luo AA, Sachdev AK (2005) Magnesium technology. TMS, Warrendale, p 145

    Google Scholar 

  10. Wu WY, Zhang P, Zeng XQ, Jin L, Yao SS, Luo AA (2008) Mater Sci Eng A 486:596

    Article  Google Scholar 

  11. Wang Y, Jin L, Zeng X, Luo A, Sachdev A, Mishra R (2008) Magnesium technology. The Minerals, Metals and Materials Society, New Orleans, p 165

    Google Scholar 

  12. Jiang L, Jonas JJ, Mishra RK, Luo AA, Sachdev AK, Godet S (2007) Acta Mater 55(11):3899

    Article  CAS  Google Scholar 

  13. Jiang L, Jonas JJ, Boyle K, Martin P (2008) Mater Sci Eng A 492:68

    Article  Google Scholar 

  14. Keshavarz Z, Barnett MR (2006) Scripta Mater 55:915

    Article  CAS  Google Scholar 

  15. Honeycombe RWK (1984) The plastic deformation of metals. Edward Arnold, London

    Google Scholar 

  16. M. R. Barnett, Nave MD Bettles CJ (2004) Mater Sci Eng A 386: 205

    Google Scholar 

  17. Huppmann Michael, Lentz Martin, Chedid Sarkis, Reimers Walter (2011) J Mater Sci 46:938. doi:10.1007/s10853-010-4838-0

    Article  CAS  Google Scholar 

  18. Kuroda Mitsutoshi, Tvergaard Viggo (2007) Int J Plasticity 23:244

    Article  CAS  Google Scholar 

  19. Ma Q, El Kadiri H, Oppedal AL, Baird JC, Li B, Horstemeyer MF, Vogel SC (2012) Int J Plasticity 29:60

    Article  CAS  Google Scholar 

  20. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Mater Trans 43:78

    Article  CAS  Google Scholar 

  21. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) Acta Mater 55:2101

    Article  CAS  Google Scholar 

  22. Mackenzie LWF, Pekguleryuz M (2008) Mater Sci Eng A 480:189

    Article  Google Scholar 

  23. Agnew SR, Yoo MH, Tome CN (2001) Acta Mater 49:4277

    Article  CAS  Google Scholar 

  24. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89

    Article  CAS  Google Scholar 

  25. Kuhlmann-Wilsdorf D (1997) Scripta Mater 36:173

    Article  CAS  Google Scholar 

  26. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Pergamon Press, Oxford

    Google Scholar 

  27. Jin L, Lin DL, Mao DL, Zeng XQ, Chen B, Ding WJ (2006) Mater Sci Eng A 423:247

    Article  Google Scholar 

  28. Roberts CS (1960) “The deformation of magnesium”. Magnesium and Its alloys. Wiley, New York

    Google Scholar 

  29. Wonsiewicz BC, Backofen EA (1967) Trans TMS AIME 239:1422

    CAS  Google Scholar 

  30. Taylor GI (1938) J Inst Met 62:307

    Google Scholar 

  31. Margolin H, Stanescu MS (1975) Acta Metall 23:1411

    Article  CAS  Google Scholar 

  32. Bohlen J, Chmelík F, Kaiser F, Letzig D, Lukáč P, Kainer KU (2002) Kovevé Materiály 40(5):290

    CAS  Google Scholar 

  33. Chino Y, Mabuchi M (2009) Scripta Mater 60:447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out as a collaborative research project supported by General Motors Global Research and Development Center (Warren, MI, USA). One of the authors, Li Jin, acknowledges the financial support of National Natural Sciences Foundation of China (Grant No. 50901044) and National Ministry of Science and Technology (2011BAE22B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Dong, J., Luo, A.A. et al. Microstructure evolution of Mg-3%Al-1%Zn alloy tube during warm bending. J Mater Sci 47, 3801–3807 (2012). https://doi.org/10.1007/s10853-011-6234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6234-9

Keywords

Navigation