Skip to main content
Log in

Elastic properties of random L12–Al3(Sc0.5TM0.5) alloys from first-principle SQSs calculations

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Special quasi-random structures (SQSs) with 32 atoms have been generated to model appropriate supercell structure of pseudo-binary random L12–Al3(Sc0.5TM0.5) (TM = Y, Ti, Zr, Hf, V, Nb and Ta) alloys. The optimized lattice parameters were in good agreement with the experimental data, and the obtained formation energies showed that all L12–Al3(Sc0.5TM0.5) alloys were stable from energetic point of view. As the atomic radius of substitution elements TM in the same Period decreased, the values of C 12 and C 44 for L12–Al3(Sc0.5TM0.5) alloys exhibited an overall tendency of increase, implying an enhanced Poisson effect and larger resistance to {100} 〈001〉 shear. The elastic isotropy of L12–Al3(Sc0.5TM0.5) alloys was overall lowered and the ductility could be improved. The calculated electronic structure demonstrated that below the Fermi level the hybridization of transition-metal d states with Al p states was reduced with decreasing of atomic radius of substitution elements TM in the same Period, which uncovered underlying mechanism for stability and elastic properties of L12–Al3(Sc0.5TM0.5) alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujikawa SI, Sugaya M, Takei H, Hirano KI (1979) J Less Common Met 63(1):87

    Article  CAS  Google Scholar 

  2. Halevy I, Beeri O, Hu J (2010) J Mater Sci 45(3):589. doi:10.1007/s10853-009-3931-8

    Article  CAS  Google Scholar 

  3. Asta M, Foiles S, Quong A (1998) Phys Rev B 57(18):11265

    Article  CAS  Google Scholar 

  4. Woodward C, Asta M, Kresse G, Hafner J (2001) Phys Rev B 63(9):094103

    Article  Google Scholar 

  5. Røyset J, Ryum N (2005) Scripta Mater 52(12):1275

    Article  Google Scholar 

  6. Schneibel J, Hazzledine P (1992) J Mater Res 7(4):868

    Article  CAS  Google Scholar 

  7. Fukunaga K, Shouji T, Miura Y (1997) Mater Sci Eng A 239–240:202

    Google Scholar 

  8. Wu J, Wen L, Tang BY, Peng LM, Ding WJ (2011) Solid State Sci 13:120

    Article  CAS  Google Scholar 

  9. Harada Y, Dunand D (2002) Mat Sci Eng A 329–331:686

    Article  Google Scholar 

  10. Dalen ME, Dunand DC, Seidman DN (2006) J Mater Sci 41(23):7814. doi:10.1007/s10853-006-0664-9

    Article  CAS  Google Scholar 

  11. Karnesky R, Vandalen M, Dunand D, Seidman D (2006) Scripta Mater 55(5):437

    Article  CAS  Google Scholar 

  12. Harada Y, Dunand D (2009) Intermetallics 17(1–2):17

    Article  CAS  Google Scholar 

  13. Krug ME, Werber A, Dunand DC, Seidman DN (2010) Acta Mater 58(1):134

    Article  CAS  Google Scholar 

  14. Vandalen M, Dunand D, Seidman D (2005) Acta Mater 53(15):4225

    Article  CAS  Google Scholar 

  15. Vandalen M, Seidman D, Dunand D (2008) Acta Mater 56(16):4369

    Article  CAS  Google Scholar 

  16. Fuller C, Murray J, Seidman D (2005) Acta Mater 53(20):5401

    Article  CAS  Google Scholar 

  17. Fuller C, Seidman D (2005) Acta Mater 53(20):5415

    Article  CAS  Google Scholar 

  18. Belov N, Alabin A, Eskin D, Istomin-Kastrovskii V (2006) J Mater Sci 41(18):5890. doi:10.1007/s10853-006-0265-7

    Article  CAS  Google Scholar 

  19. Cabibbo M, Evangelista E (2006) J Mater Sci 41(16):5329. doi:10.1007/s10853-006-0306-2

    Article  CAS  Google Scholar 

  20. Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN (2010) Acta Mater 58(15):5184

    Article  CAS  Google Scholar 

  21. Harada Y, Dunand D (2000) Acta Mater 48(13):3477

    Article  CAS  Google Scholar 

  22. Xu JH, Freeman A (1990) Phys Rev B 41(18):12553

    Article  CAS  Google Scholar 

  23. Simonovic D, Sluiter MHF (2007) Mater Res Soc Symp Proc 979E

  24. Hass K, Davis L, Zunger A (1990) Phys Rev B 42(6):3757

    Article  CAS  Google Scholar 

  25. Wei SH, Ferreira L, Bernard JE, Zunger A (1990) Phys Rev B 42(15):9622

    Article  CAS  Google Scholar 

  26. Zunger A, Wei SH, Ferreira L, Bernard JE (1990) Phys Rev Lett 65(3):353

    Article  CAS  Google Scholar 

  27. Magri R, Froyen S, Zunger A (1991) Phys Rev B 44:7947

    Article  CAS  Google Scholar 

  28. Gyorffy B (1972) Phys Rev B 5(6):2382

    Article  Google Scholar 

  29. Jiang C, Wolverton C, Sofo J, Chen LQ, Liu ZK (2004) Phys Rev B 69(21):214202

    Article  Google Scholar 

  30. Holec D, Rachbauer R, Kiener D, Cherns P, Costa P, McAleese C, Mayrhofer P, Humphreys C (2011) Phys Rev B 83(16):165122

    Article  Google Scholar 

  31. Van de Walle A, Asta M, Ceder G (2002) Calphad 26(4):539

    Article  Google Scholar 

  32. Kong Y, Liu B (2007) J Phys Soc Jpn 76(2):024605

    Article  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188

    Article  Google Scholar 

  36. Jiang C (2008) Scripta Mater 59(10):1075

    Article  CAS  Google Scholar 

  37. Birch F (1978) J Geophys Res 83(3):1257

    Article  CAS  Google Scholar 

  38. Mattesini M, Ahuja R, Johansson B (2003) Phys Rev B 68(18):184108

    Article  Google Scholar 

  39. Tang BY, Wang N, Yu WY, Zeng XQ, Ding WJ (2008) Acta Mater 56(14):3353

    Article  CAS  Google Scholar 

  40. Psiachos D, Hammerschmidt T, Drautz R (2011) Acta Mater 59(11):4255

    Article  CAS  Google Scholar 

  41. Born M (1940) Math Proc Camb Philos Soc 36:160

    Article  CAS  Google Scholar 

  42. Gercek H (2007) Int J Rock Mech Min Sci 44(1):1

    Article  Google Scholar 

  43. Liu Y, Liu L, Wang S, Ye H (2007) Intermetallics 15(3):428

    Article  CAS  Google Scholar 

  44. Hill R (1952) Proc Phys Soc Sect A 65(5):349

    Article  Google Scholar 

  45. Young AF, Sanloup C, Gregoryanz E, Scandolo S, Hemley RJ, Mao H (2006) Phys Rev Lett 96(15):155501

    Article  Google Scholar 

  46. Pugh S (1954) Philos Mag 45(367):823–843

    CAS  Google Scholar 

  47. Pettifor D (1992) Mater Sci Technol 8(4):345

    CAS  Google Scholar 

  48. Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York

    Google Scholar 

  49. Zhang Y, Li S, Obbard E, Wang H, Wang S, Hao Y, Yang R (2011) Acta Mater 59(8):3081

    Article  CAS  Google Scholar 

  50. Lin W, Xu J, Freeman A (1992) Phys Rev B 45(19):10863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (50861002 and 51071053), Educational Innovation Plan Project for Guangxi Postgraduate (GXU11T31073), Open Project of Key Laboratory of Materials Design and Preparation Technology of Hunan Province (KF0803) and the Scientific Research Foundation of Guangxi University (X071117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Yu Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RN., Zeng, MX., Chen, XJ. et al. Elastic properties of random L12–Al3(Sc0.5TM0.5) alloys from first-principle SQSs calculations. J Mater Sci 47, 3793–3800 (2012). https://doi.org/10.1007/s10853-011-6233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6233-x

Keywords

Navigation