Skip to main content
Log in

Structural investigations of V2O5–P2O5–CaO glass system by FT-IR and EPR spectroscopies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

xV2O5·(100 − x)[0.7P2O5·0.3CaO] glass system was obtained for 0 ≤ x ≤ 35 mol% V2O5. In order to obtain information regarding their structure, several techniques such as X-Ray diffraction, FT-IR, and EPR spectroscopies were used. X-Ray diffraction patterns of investigated samples are characteristic of vitreous solids. FT-IR spectra of 0.7P2O5·0.3CaO glass matrix and its deconvolution show the presence in the glass structure of all structural units characteristic to P2O5. Their number are increasing for x ≤ 3 mol% V2O5 then, for higher content of vanadium ions, the number of phosphate structural units are decreasing leading to a depolymerization of the structure. The structural units characteristic to V2O5 were not evidenced but their contribution to the glass structure can be clearly observed. EPR revealed a well resolved hyperfine structure (hfs) typical for vanadyl ions in a C4v symmetry for x ≤ 3 mol% V2O5. For 5 < x < 20 mol% V2O5 the spectra show a superposition of two EPR signals one due to a hfs structure and another consisting of a broad line typical for associated V4+–V4+ ions. For x ≥ 20 mol% V2O5 only the broad line can be observed. The composition dependence of the line-width suggests the presence of dipole–dipole interaction between vanadium ions up to x ≤ 5 mol% V2O5 and superexchange interactions between vanadium ions for x > 5 mol% V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Padma Rao MVN, Ravikumar V, Srinivasa Rao L, Venkateswara Rao P, Srinivasa Reddy M, Veeraiah N (2009) J Alloys Compd 472:489

    Article  Google Scholar 

  2. Shyu J-J, Yeh C-H (2007) J Mater Sci 42:4772. doi:10.1007/s10853-006-0766-4

    Article  CAS  Google Scholar 

  3. Doweidar H, Moustafa YM, El-Egili K, Abbas I (2005) Vib Spectrosc 37:91

    Article  CAS  Google Scholar 

  4. Khattak GD, Mekki A, Wenger LE (2009) J Non-Cryst Solids 355:2148

    Article  CAS  Google Scholar 

  5. Crobu M, Rossi A, Mangolini F, Spencer ND (2010) Tribochemistry of bulk zinc metaphosphate glasses. Tribol Lett 39:121

    Article  CAS  Google Scholar 

  6. Aguiar H, Solla EL, Serra J, González P, León B, Malz F, Jäger C (2008) J Non-Cryst Solids 354:5004

    Article  CAS  Google Scholar 

  7. Yahia IS, Saddeek YB, Sakr GB, Knoff W, Story T, Romcevic N, Dobrowolski W (2009) J Magn Magn Mater 321:4039

    Article  CAS  Google Scholar 

  8. Assem EE, Elmehasseb I (2011) J Mater Sci 46:2071. doi:10.1007/s10853-010-5040-0

    Article  CAS  Google Scholar 

  9. Singh R, Chakravarthi JS (1995) Phys Rev B 51:16396

    Article  CAS  Google Scholar 

  10. Ivascu C, Timar Gabor A, Cozar O, Daraban L, Ardelean I (2010) J Mol Struct 993:249

    Article  Google Scholar 

  11. Ticha H, Schwarz CJ, Tichy CL (2007) J Mater Sci 42:215. doi:10.1007/s10853-006-1054-z

    Article  CAS  Google Scholar 

  12. Le Saout G, Simon P, Fayon F, Blin A, Vaills Y (2002) J Raman Spectrosc 33:740

    Article  CAS  Google Scholar 

  13. Saddeek YB, Shaaban ER, Aly KA, Sayed IM (2009) J Alloys Compd 478:447

    Article  CAS  Google Scholar 

  14. Ravikumar RVSSN, Rajagopal Reddy V, Chandrasekhar AV, Reddy BJ, Reddy YP, Rao PS (2002) J Alloys Compd 337:272

    Article  CAS  Google Scholar 

  15. Cozar O, Ardelean I, Simon V, David L, Mih V, Vedeanu N (1999) Appl Magn Res 16:529

    Article  CAS  Google Scholar 

  16. Kerkouri N, Haddad M, Et-tabirou M, Chahine A, Laanab L (2011) Phys B Condensed Matter 406:3142

    Article  CAS  Google Scholar 

  17. Garbarczyk JE, Tykarski L, Machowski P, Wasiucionek M (2001) Solid State Ionics 140:141

    Article  CAS  Google Scholar 

  18. Garbarczyk JE, Wasiucionek M, Jozwiak P, Tykarski L, Nowinski JL (2002) Solid State Ionics 154–155:367

    Article  Google Scholar 

  19. McKnight JM, Whitmore KA, Bunton PH, Baker DB, Vennerberg DC, Feller SA (2010) J Non-Cryst Solids 356:2268

    Article  CAS  Google Scholar 

  20. Kumar VR, Chakradhar RPS, Murali A, Gopal NO, Rao JL (2003) Int J Mod Phys B 17:3033

    Article  CAS  Google Scholar 

  21. Kivelson D, Lee SK (1964) J Chem Phys 41:1896

    Article  CAS  Google Scholar 

  22. Seth VP, Gupta S, Jindal A (1993) J Non-Cryst Solids 162:263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. E. Indrea from National Institute for Research and Development on Isotopic and Molecular Technologies—INCDTIM, Cluj-Napoca, Romania for performing X-ray measurements on the investigated samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Simedru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefan, R., Simedru, D., Popa, A. et al. Structural investigations of V2O5–P2O5–CaO glass system by FT-IR and EPR spectroscopies. J Mater Sci 47, 3746–3751 (2012). https://doi.org/10.1007/s10853-011-6225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6225-x

Keywords

Navigation