Skip to main content

Advertisement

Log in

Low-temperature microwave sintering of TiN–SiC nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Densification kinetics study during microwave sintering of titanium nitride-based nanocomposite has been conducted. A series of TiN–SiC compositions with 1, 3, 5 wt% of silicon carbide were microwave sintered at relatively low sintering temperatures (900–1,300 °C) for 0–30 min. The SiC content influenced on heating uniformity and final density and grain-size achieved. Densification process during microwave sintering obeyed the mechanism of grain-boundary diffusion with activation energy of 235 kJ mol−1. Microwave sintering resulted in fine microstructure (~300 nm) and hence high values of micro hardness (~20 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pierson HO (1996) Handbook of refractory carbides and nitrides: properties characteristics processing and applications. Noyes Publications, New Jersey

    Google Scholar 

  2. Munsten A, Sagel K, Schlamp G (1954) Nature 174:1154

    Article  Google Scholar 

  3. Kuzenkova MA, Kislyi PS (1971) Powder Metall Metal Ceram 10:125

    Google Scholar 

  4. Synielnikowa W, Niemyskia T, Panczyka J, Kierzek-Pecold E (1971) J Less-Common Met 23:1

    Article  CAS  Google Scholar 

  5. Diserens M, Patscheider J, Levy F (1998) Surf Coat Technol 108–109:241

    Article  Google Scholar 

  6. Hosokawa M, Nogi K, Naito M, Yokoyama T (eds) (2007) Nanoparticle Technology Handbook. Elsevier, Amsterdam

    Google Scholar 

  7. Troitskii VN, Rakhmatullina AZ, Berestenko VI, Gurov SV (1983) Powder Metall Metal Ceram 22:12

    Article  Google Scholar 

  8. Ragulya AV (2008) Adv Appl Ceram 107:118

    Article  CAS  Google Scholar 

  9. Themelin L, Desmaison-Brut M, Boncoeur M, Valin F, Microstructure, mechanical properties and oxidation behaviour of hot-isostatic-pressed titanium nitiride. L’Industrie Ceramique 828:426-433

  10. Yamada T, Shimada M, Koizumi M (1980) Am Ceram Soc Bull 59:611

    CAS  Google Scholar 

  11. Groza JR, Curtis JD, Kramer M (2000) J Am Ceram Soc 83:1281

    Article  CAS  Google Scholar 

  12. Wang L, Jiang W, Chen L, Yang M, Zhu H (2006) J Am Ceram Soc 89:2364

    CAS  Google Scholar 

  13. Angerer P, Yu LG, Khor KA, Korb G, Zalite I (2005) J Eur Ceram Soc 25:1919

    Article  CAS  Google Scholar 

  14. Sherif El-Sekandarany M, Omori M, Konno TJ, Sumiyama K, Hirai T, Suzuki K (1998) Metall Mater Trans A 29A:1973

    Article  Google Scholar 

  15. Agrawal DK (1998) Curr Opin Solid State Mater Sci 3:480

    Article  CAS  Google Scholar 

  16. Binner J, Annapoorani K, Paul A, Santacruz I, Vaidhyanathan B (2008) J Eur Ceram Soc 28:973

    Article  CAS  Google Scholar 

  17. Vaidhyanathan B, Agrawal DK, Roy R (2000) J Mater Res 15:974

    Article  CAS  Google Scholar 

  18. Venkateswarlu K, Saurabh S, Rajinikanth V, Sahu RK, Ray AK (2010) J Mater Eng Perform 19(2):231

    Article  CAS  Google Scholar 

  19. Matsumoto T, Makino Y, Miyake S (2001) Science 36:693

    CAS  Google Scholar 

  20. Pert E, Carmel Y, Birnboim A, Olorunyolemi T, Gershon D, Calame J, Lloyd IK, Wilson OC (2001) J Am Ceram Soc 84:1981

    Article  CAS  Google Scholar 

  21. Niihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lett 1:13

    Article  CAS  Google Scholar 

  22. Tikkanen MH, Makipirtti SA (1965) Int J Powder Metll 1:15

    CAS  Google Scholar 

  23. Demirskyi D, Agrawal D, Ragulya A (2010) Mater Lett 64:1433

    Article  CAS  Google Scholar 

  24. Fang Y, Agrawal DK, Roy R (2003) Microwave sintering of nano-phase MgO, TiO2, and Cu metal powders. In Proc. Sintering 2003, 15-17 September 2003, Penn State University, Pennsylvania: USA

  25. Lynn Johnson D, Cutler IB (1963) J Am Ceram Soc 46:541

    Article  Google Scholar 

  26. Lynn Johnson D, Cutler IB (1970) J Am Ceram Soc 53:136

    Article  Google Scholar 

  27. Kuzenkova MA, Kislyi PS (1970) Powder Metall Ceram 9:379

    Google Scholar 

  28. Ragulya AV, Skorokhod VV (2007) Consolidated Nanostructured Materials. Naukova Dumka, Kiev

    Google Scholar 

  29. Nightingale SA (2001) Ionics 7:327

    Article  CAS  Google Scholar 

  30. Birnboim A, Calame JP, Carmel Y (1999) J Appl Phys 85:478

    Article  CAS  Google Scholar 

  31. Prochazka S, Coble RL (1970) Sintering 2:15

    CAS  Google Scholar 

  32. Moriyoshi Y, Komaysu W (1970) J Am Ceram Soc 53:671

    Article  CAS  Google Scholar 

  33. Castro DT, Ying JY (1997) NanoStruct Mater 9:67

    Article  CAS  Google Scholar 

  34. Andrievsky RA (1996) In: Chow GM, Gonsalves KE (eds) Nanotechnology: Molecularly Designed Materials. American Chemical Society, Washington DC, p 294

    Chapter  Google Scholar 

  35. Andrievsky RA (1997) NanoStruct Mater 9:607

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by STCU #4259. The authors thank Dr. M. Gadzira (IPMS NASU) for providing nanocrystalline SiC powder used in the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Demirskyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirskyi, D., Ragulya, A. Low-temperature microwave sintering of TiN–SiC nanocomposites. J Mater Sci 47, 3741–3745 (2012). https://doi.org/10.1007/s10853-011-6224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6224-y

Keywords

Navigation