Skip to main content
Log in

Connecting the macro and microstrain responses in technical porous ceramics. Part II: microcracking

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Following previous study on non-microcracked porous ceramics (SiC and alumina), we studied the micro and macrostrain response of honeycomb porous microcracked ceramics under applied uniaxial compressive stress. Cordierites of different porosities were compared. Both macroscopic and microscopic strains were measured, by extensometry and neutron diffraction, respectively. Lattice strains were determined using a single diffraction peak (steady-state neutron source) in both the axial and the transverse sample directions. Complementarily, we measured the macroscopic Young’s modulus of these materials as a function of temperature, at zero load, using high-temperature laser ultrasound spectroscopy. This allowed having a non-microcracked reference state for all the materials investigated. Confirming our previous study, we observed that macrostrain relaxation occurs at constant load, which is not observed in non-microcracked compounds, such as SiC. This relaxation effect increases as a function of porosity. Moreover, we generally observed a linear dependence of the diffraction modulus on porosity. However, for low and very high applied stress, the lattice strain behavior versus stress seems to be influenced by microcracking and shows considerable strain release, as already observed in other porous microcracked ceramics. We extended to microcracked porous ceramics (cordierite) the macro to microstrain and stress relations previously developed for non-microcracked ceramics, making use of the integrity factor (IF) model. Using the whole set of data available, the IF could also be calculated as a function of applied stress. It was confirmed that highly porous microcracked materials have great potential to become stiffer and more connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bruno G, Efremov AM, Webb JE (2010) Acta Mater 58:6649

    Article  CAS  Google Scholar 

  2. Bruno G, Efremov AM, Wheaton BR, Bobrikov I, Simkin V, Misture S (2010) J Eur Ceram Soc 30:2555

    Article  CAS  Google Scholar 

  3. Bruno G, Efremov AM, Wheaton BR, Webb JE, Brown D, Clausen B, Simkin V, Balagurov AM (2010) Acta Mater 58:1994

    Article  CAS  Google Scholar 

  4. Pozdnyakova I, Bruno G, Efremov AM, Clausen B, Hughes DJ (2009) Adv Eng Mater 11:1023

    CAS  Google Scholar 

  5. Bruno G, Pozdnyakova I, Efremov AM, Levandovskyi AN, Clausen B, Hughes DJ (2010) Mater Sci Forum 652:191

    Article  CAS  Google Scholar 

  6. Heap MJ, Vinciguerra S, Meredith PG (2009) Tectonophysics 471:153

    Article  Google Scholar 

  7. Frishbutter A, Neov D, Scheffzük C, Vrana M, Walther K (2000) J Struct Geol 22:1587

    Article  Google Scholar 

  8. Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004) Geophys Res Lett 31:L16604

    Article  Google Scholar 

  9. Nickerson ST, An CP, Boger T (2011) In: ASME McMATT conference, Chicago

  10. Sato I, Ichikawa Y, Sakanoue J, Mizutani M, Adachi N, Ota T (2008) J Am Ceram Soc 91:607

    Article  CAS  Google Scholar 

  11. Doncieux A, Stagnol D, Huger M, Chotard T, Gault C, Ota T, Hashimoto S (2008) J Mater Sci 43:4167. doi:10.1007/s10853-007-2414-z

    Article  CAS  Google Scholar 

  12. Levandovskiy AN, Efremov AM, Bruno G (2012) Mater Sci Forum 706–709:1667

    Article  Google Scholar 

  13. Levandovskiy AN, Efremov AM, Schermerhorn A (2010) In: Proceedings of the 3rd international conference on porous media and its applications in science and engineering ICPM3, Montecatini, June 2010

  14. Bruno G, Efremov AM, Levandovskyi AN, Clausen B (2011) J Mater Sci 46:161. doi:10.1007/s10853-010-4899-0

    Article  CAS  Google Scholar 

  15. Mori T, Tanaka K (1973) Acta Metall 21:571

    Article  Google Scholar 

  16. Kachanov M, Tsukrov I, Shafiro B (1994) Appl Mech Rev 47:S151

    Article  Google Scholar 

  17. McAdam GD (1951) J Iron Steel Inst 168:346

    CAS  Google Scholar 

  18. Gibson LJ, Ashby MF (1982) Proc R Soc Lond A382:43

    Google Scholar 

  19. Bruno G, Efremov AM, An CP, Nickerson ST (2011) In: Widjaja S, Singh D (eds) Advances in bioceramics and porous ceramics IV—ceramic engineering & science proceedings (CESP), vol 32, issue 6, p 137

  20. Efremov AM (2006) Philos Mag 86:5431

    Article  CAS  Google Scholar 

  21. Chen DKS (1990) In: ASME Winter Annual meeting, Dallas

  22. Hauk V (1997) Structural and residual stress analysis by nondestructive methods: evaluation—application—assessment. Elsevier, Amsterdam

    Google Scholar 

  23. Noyan IC, Cohen JB (1987) Residual stress: measurement by diffraction and interpretation. Springer, New York

    Google Scholar 

  24. Bruno G, Fanara C, Hughes DJ, Ratel N (2006) Nucl Instrum Methods Phys Res B 246:425

    Article  CAS  Google Scholar 

  25. Hughes DJ, Bruno G, Pirling T, Withers PJ (2006) Neutron News 17:28

    Article  Google Scholar 

  26. Pirling T, Bruno G, Withers PJ (2006) Mater Sci Eng 437:139

    Article  Google Scholar 

  27. http://www.ill.eu/salsa

  28. ASTM C 623-92 (2000) Standard test method for Young’s modulus, shear modulus, and Poisson’s ratio for glass and glass ceramics by resonance

  29. Scruby CB, Drain LE (1990) Laser ultrasonics: techniques and applications. Adam Hilger, Bristol

    Google Scholar 

  30. Efremov AM, Bruno G, Wheaton BR (2011) J Eur Ceram Soc 31:281

    Article  CAS  Google Scholar 

  31. Bruno G, Vogel S (2008) J Am Ceram Soc 91:2646

    Article  CAS  Google Scholar 

  32. Addiego WP, Melscoet-Chauvel IM (2007) High porosity cordierite ceramic article and method. US patent 2007/0142208 A1

  33. Cleveland JJ, Bradt RC (1978) J Am Ceram Soc 61:478

    Article  CAS  Google Scholar 

  34. Toohill K, Siegesmund S, Bass JD (1999) Phys Chem Miner 26:333

    Article  CAS  Google Scholar 

  35. Lawn B (1993) Fracture of brittle solids. Solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  36. Gogotsi GA, Zavada VP, Kharatinov FYa (1984) Strength Mater 16:1651

    Article  Google Scholar 

  37. Bruno G, Efremov AM, Brown DW (2010) Scr Mater 63:285

    Article  CAS  Google Scholar 

  38. Backhaus-Ricoult M, Glose C, Tepesch P, Wheaton BR, Zimmermann J (2010) In: Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics III. Ceramic engineering and science proceedings, vol 31, issue 6, p 145

  39. McKie D, McKie C (1990) Essentials of crystallography. Blackwell, Cambridge

    Google Scholar 

Download references

Acknowledgments

Jean-Claude Collet-Fenetrier, John Allibon (ILL, Grenoble, F), Angela Graefe, Gregory Merkel, Ron Parysek (Corning Incorporated). Beamtime from the ILL, Grenoble, France, is greatly appreciated. Our Reviewer is gratefully acknowledged for the precious advice, and the stimulating exchange of ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, G., Efremov, A.M., An, C.P. et al. Connecting the macro and microstrain responses in technical porous ceramics. Part II: microcracking. J Mater Sci 47, 3674–3689 (2012). https://doi.org/10.1007/s10853-011-6216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6216-y

Keywords

Navigation