Skip to main content
Log in

Spark-plasma-sintering temperature dependence of structural and piezoelectric properties of BNT–BT0.08 nanostructured ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Bi0.5Na0.5)TiO3 doped with 8 mol% BaTiO3 powder prepared by sol–gel was compacted and sintered by spark-plasma-sintering method. The influence of spark-plasma-sintering temperature on the densification and piezoelectric properties of these ceramics was studied. Starting from BNT–BT0.08 powder gel with a microstructure consisting of particles with average size of 50 nm, ceramics with grain size of 60–90 nm and density of about 98.9–99.6% of the theoretical density were obtained by spark-plasma-sintering at 800–900 °C. Increasing the sintering temperature by SPS from 800 to 900 °C lead to the increase of d 33, k p, ε T33 and, decrease of Q m. Typical d 33 and k p values of BNT–BT0.08 ceramics sintered by spark-plasma-sintering at 900 °C were 8 and 0.029, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693

    Article  CAS  Google Scholar 

  2. Chu BJ, Cho JH, Lee YH, Kim BI, Chen DR (2002) J Ceram Proc Res 3:231

    Google Scholar 

  3. Hiruma Y, Watanabe Y, Nagata H, Takenaka T (2007) Key Eng Mater 350:93

    Article  CAS  Google Scholar 

  4. Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) Ferroelectrics 40:75

    Article  CAS  Google Scholar 

  5. Herabut A, Safari A (1997) J Am Ceram Soc 80:2954

    Article  CAS  Google Scholar 

  6. Takenaka T, Maruyama KI, Sakata K (1991) Jpn J Appl Phys 30:2236

    Article  CAS  Google Scholar 

  7. Huidong L, Chude F, Wenlong Y (2004) Mater Lett 58:1194

    Article  Google Scholar 

  8. Kim BH, Han SJ, Kim JH, Lee JH, Ahn BK, Xu Q (2007) Ceram Int 33:447

    Article  CAS  Google Scholar 

  9. Chen M, Xu Q, Kim BH, Ahn BK, Ko JH, Kang WJ, Nam OJ (2008) J Eur Ceram Soc 28:843

    Article  Google Scholar 

  10. West DL, Payne DA (2003) J Am Ceram Soc 86:192

    Article  CAS  Google Scholar 

  11. Mercadelli E, Galassi C, Costa AL, Albonetti S, Sanson A (2008) J Sol-Gel Sci Technol 46:39

    Article  CAS  Google Scholar 

  12. Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) J Alloys Comp Mater 490:690

    Article  CAS  Google Scholar 

  13. Feng G, Chang-Song Z, Xiang-Chun L, Li-Hong C, Chang-Sheng T (2007) J Eur Ceram Soc 27:3453

    Article  Google Scholar 

  14. Xiaoxing W, Laiwa CH, Chungloong C (2003) Solid State Commun 125:395

    Article  Google Scholar 

  15. Munir ZA, Tamburini UA, Ohyanagi M (2006) J Mater Sci 41:763. doi:10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  16. Aldica GV, Cernea M, Ganea P (2010) J Mater Sci 45:2606. doi:10.1007/s10853-010-4234-9

    Article  CAS  Google Scholar 

  17. Li B, Wan X, Cai M, Hao L, Li L (2003) Mater Chem Phys 82:173

    Article  CAS  Google Scholar 

  18. Takeuchi T, Suyama Y, Sinclair DC, Kageyama H (2001) J Mater Sci 36:2329. doi:10.1023/A:1017585209648

    Article  CAS  Google Scholar 

  19. Maiwa H (2009) Jpn J Appl Phys 48:09KDO4-1

    Article  Google Scholar 

  20. Deng X, Wang X, Wen H, Kang A, Gui Z, Li L (2006) J Am Ceram Soc 89:1059

    Article  CAS  Google Scholar 

  21. Valdez-Nava Z, Guillemet-Fritsch S, Tenailleau C, Lebey T, Durand B, Chane-Ching JY (2009) J Electroceram 22:238

    Article  CAS  Google Scholar 

  22. Berbecaru C, Cernea M, Aldica GV, Trusca R (2011) World Acad Sci Eng Technol 79:147

    Google Scholar 

  23. Yilmaz H, Messing GL, Trolier-McKinstry S (2003) J Electroceram 11:207

    Article  CAS  Google Scholar 

  24. Yilmaz H, Trolier-McKinstry S, Messing GL (2003) J Electroceram 11:217

    Article  CAS  Google Scholar 

  25. Bruker AXS (2005) TOPAS V3: general profile and structure analysis software for powder diffraction data. User’s manual. Bruker AXS, Karlsruhe

    Google Scholar 

  26. Jones GO, Thomas PA (2002) Acta Crystallogr Sec B 58:168. Pattern: 01-070-9850

  27. Jones GO, Thomas PA (2002) Acta Crystallogr Sec B 58:168. Pattern: 01-070-9851

  28. Yoon MS, Khansur NH, Choi BK, Lee YG, Ur SC (2009) Ceram Int 35:3027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Romanian Research Ministry PNCDI II, Contract no. 72-153/2008, to the European Program COST MP0904 Single- and multiphase ferroics and multiferroics with restricted geometries (SIMUFER) and to the “Nucleu”-project, PN09-450103, from the National plan for RDI, funded by the Romanian Ministry of Education and Research, and the National Authority for Scientific Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Cernea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernea, M., Fochi, F., Aldica, G.V. et al. Spark-plasma-sintering temperature dependence of structural and piezoelectric properties of BNT–BT0.08 nanostructured ceramics. J Mater Sci 47, 3669–3673 (2012). https://doi.org/10.1007/s10853-011-6215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6215-z

Keywords

Navigation