Skip to main content
Log in

The influence of oxygen deficiency on structural and electronic properties of layered superconductor (Fe2As2)(Sr4V2O6−x )

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By means of the first-principles FLAPW-GGA approach, we studied the influence of oxygen deficiency on the structural and electronic properties of the superconducting phase (Fe2As2)(Sr4V2O6−x ). We find that the formation of vacancies in 2c sites of oxygen sublattice [when the initial tetragonal structure of the stoichiometric crystal (Fe2As2)(Sr4V2O6) is kept] is energetically more preferable than in 4f sites, when orthorhombic distortions arise. The influence of oxygen vacancies on the structure of (Fe2As2) blocks is very insignificant; thus, using the known structural indicators, it is impossible to explain the observed drop of transition temperature T C for oxygen-deficient systems by structural factors. On the other hand, the results of the band structure calculations allow us to assert that the vacancy-induced drop of T C may be caused by the electronic factor, i.e., by the established decrease in Ntot(E F) for the oxygen-deficient system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) J Am Chem Soc 130:3296

    Article  CAS  Google Scholar 

  2. Sadovskii MV (2008) Physics Uspekhi 51:1201

    Article  CAS  Google Scholar 

  3. Ivanovskii AL (2008) Physics Uspekhi 51:1229

    Article  CAS  Google Scholar 

  4. Izyumov YA, Kurmaev EZ (2008) Physics Uspekhi 51:1261

    Article  CAS  Google Scholar 

  5. Ren ZA, Zhao ZX (2009) Adv Mater 21:4584

    Article  CAS  Google Scholar 

  6. Paglione J, Greene RL (2010) Nat Phys 6:645

    Article  CAS  Google Scholar 

  7. Johnson DC (2010) Adv Phys 59:803

    Article  Google Scholar 

  8. Ivanovskii AL (2011) Physica C 471:409

    Article  CAS  Google Scholar 

  9. Ivanovskii AL (2010) Russ Chem Rev 79:1

    Article  CAS  Google Scholar 

  10. Ogino H, Machida K, Yamamoto A, Kishio K, Shimoyama J, Tohei T, Ikuhara Y (2010) Supercond Sci Technol 23:115005

    Article  Google Scholar 

  11. Shirage PM, Kihou K, Lee CH, Kito H, Eisaki H, Iyo A (2010) Appl Phys Lett 97:172506

    Article  Google Scholar 

  12. Kawaguchi N, Ogino H, Shimizu Y, Kishio K, Shimoyama J (2010) Appl Phys Express 3:063102

    Article  Google Scholar 

  13. Ogino H, Shimizu Y, Ushiyama K, Kawaguchi N, Kishio K, Shimoyama J (2010) Appl Phys Express 3:063103

    Article  Google Scholar 

  14. Ogino H, Sato S, Matsumura Y, Kawaguchi N, Ushiyama K, Katsura Y, Horii S, Kishio K, Shimoyama J (2010) Physica C 470:S280

    Article  CAS  Google Scholar 

  15. Sato S, Ogino H, Kawaguchi N, Katsura Y, Kishio K, Shimoyama J (2010) Supercond Sci Technol 23:045001

    Article  Google Scholar 

  16. Tegel M, Hummel F, Lackner S, Schellenberg I, Pöttgen R, Johrendt D (2009) Z Anorg Allg Chem 635:2242

    Article  CAS  Google Scholar 

  17. Zhu XY, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen HH (2009) Phys Rev B 79:220512R

    Article  Google Scholar 

  18. Kotegawa K, Kawazoe T, Tou H, Murata K, Ogino H, Kishio K, Shimoyama J (2009) J Phys Soc Jpn 78:123707

    Article  Google Scholar 

  19. Shein IR, Ivanovskii AL (2009) J Supercond Nov Magn 22:613

    Article  CAS  Google Scholar 

  20. Wang GT, Zhang MP, Zheng LH, Yang ZH (2009) Phys Rev B 80:184501

    Article  Google Scholar 

  21. Lee KW, Pickett WE (2010) EPL 89:57008

    Article  Google Scholar 

  22. Mazin II (2010) Phys Rev B 81:020507

    Article  Google Scholar 

  23. Nakamura H, Machida M (2010) Phys Rev B 82:094503

    Article  Google Scholar 

  24. Han F, Zhu XY, Mu G, Cheng P, Shen B, Zeng B, Wen HH (2010) Sci China Phys Mech Astron 53:1202

    Article  CAS  Google Scholar 

  25. Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  26. Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  27. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Article  Google Scholar 

  28. Saito T, Onari S, Kontani H (2010) Phys Rev B 82:144510

    Article  Google Scholar 

  29. Kuroki H, Usui H, Onari S, Arita R, Aoki H (2009) Phys Rev B 79:224511

    Article  Google Scholar 

  30. Mizuguchi Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y (2010) Supercond Sci Technol 23:054013

    Article  Google Scholar 

  31. Kuchinskii EZ, Nekrasov IA, Sadovskii MV (2010) JETP Lett 91:518

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the RFBR (Grant 10-03-96008) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suetin, D.V., Shein, I.R. & Ivanovskii, A.L. The influence of oxygen deficiency on structural and electronic properties of layered superconductor (Fe2As2)(Sr4V2O6−x ). J Mater Sci 47, 3663–3668 (2012). https://doi.org/10.1007/s10853-011-6214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6214-0

Keywords

Navigation