Skip to main content
Log in

Grafted gelatin microspheres as potential pH-responsive devices

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study describes the synthesis of polymeric microspheres by reversed-phase graft polymerization of native gelatin (GL) and sodium methacrylate, which are useful as stimuli-responsive drug delivery devices. By means of varying the GL/functional monomer ratios (2.0–0.5 w/w), formulations with different crosslinking degrees, dimensional distributions, and water affinities were synthesized. The hydrogels showed spherical shape, porous surface, and high water affinity at neutral pH value with respect to the acidic conditions, with the ratio between the swellings, at pH 7.0 and 1.0, being in the range 3.7–5.1. In vitro release studies, using diclofenac sodium salt, in neutral and acidic media, simulating biological fluids, were performed. For all formulations, low amounts of drug (M t /M 0 percent <20.0%) are released in acidic medium. When the pH is 7.0, the swelling of the network increases, and the drug molecules diffuse through the polymeric structure. By means of semi-empirical equations, the release mechanism was studied, and the diffusional contribute was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dispenza C, Tripodo G, Lo Presti C, Spadaro G, Giammona G (2009) React Funct Polym 69:565

    Article  CAS  Google Scholar 

  2. Ju XJ, Xie R, Yang L, Chu LY (2009) Expert Opin Ther Pat 19:493

    Article  CAS  Google Scholar 

  3. Kuckling D (2009) Colloid Polym Sci 287:881

    Article  CAS  Google Scholar 

  4. Lyon LA, Meng ZY, Singh N, Sorrell CD, John AS (2009) Chem Soc Rev 38:865

    Article  CAS  Google Scholar 

  5. Ma L, Liu M, Liu H, Chen J, Gao C, Cui D (2010) Polym Adv Technol 21:348

    CAS  Google Scholar 

  6. Gehrke SH (1993) Adv Polym Sci 110:81

    Article  CAS  Google Scholar 

  7. Lee KY, Yuk SH (2007) Prog Polym Sci 32:669

    Article  CAS  Google Scholar 

  8. Nezhadi SH, Lotfipour F, Dass CR (2009) J Drug Target 17:731

    Article  CAS  Google Scholar 

  9. GuhaSarkar S, Banerjee R (2010) J Control Release 148:147

    Article  CAS  Google Scholar 

  10. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Biomacromolecules 10:1923

    Article  CAS  Google Scholar 

  11. Singh D, Choudhary V, Koul V (2007) J Appl Polym Sci 104:1456

    Article  CAS  Google Scholar 

  12. Fu Y, Kao WJ (2009) Pharm Res 26:2115

    Article  CAS  Google Scholar 

  13. Raafat AI (2010) J Appl Polym Sci 118:2642

    Article  CAS  Google Scholar 

  14. Dong ZF, Wang Q, Du YM (2006) J Membr Sci 280:37

    Article  CAS  Google Scholar 

  15. Curcio M, Spizzirri UG, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N (2010) Eur J Pharm Biopharm 76:48

    Article  CAS  Google Scholar 

  16. Cirillo G, Kraemer K, Fuessel S, Puoci F, Curcio M, Spizzirri UG, Altimari I, Iemma F (2010) Biomacromolecules 11:3309

    Article  CAS  Google Scholar 

  17. Spizzirri UG, Parisi OI, Iemma F, Cirillo G, Puoci F, Curcio M, Picci N (2010) Carbohydr Polym 79:333

    Article  Google Scholar 

  18. Puoci F, Iemma F, Curcio M, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2008) J Agric Food Chem 56:10646

    Article  CAS  Google Scholar 

  19. Gao JP, Li ZC, Wang W, Huang MG (1998) J Appl Polym Sci 68:1485

    Article  CAS  Google Scholar 

  20. Keles H, Sacak M (2003) J Appl Polym Sci 89:2836

    Article  CAS  Google Scholar 

  21. Ritger PL, Peppas NA (1987) J Control Release 5:23

    Article  CAS  Google Scholar 

  22. Peppas NA, Sahlin JJ (1989) Int J Pharm 57:169

    Article  CAS  Google Scholar 

  23. Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Colloid Polym Sci 287:779

    Article  CAS  Google Scholar 

  24. Malliou ET, Markopoulou CK, Koundourellis JE (2004) J Liq Chromatogr Relat Technol 27:1565

    CAS  Google Scholar 

  25. Iemma F, Spizzirri UG, Puoci F, Muzzalupo R, Trombino S, Picci N (2005) Drug Deliv 12:179

    Article  CAS  Google Scholar 

  26. Abdel-Tawab M, Zettl H, Schubert-Zsilavecz M (2009) Curr Med Chem 16:2042

    Article  CAS  Google Scholar 

  27. Stubbe BG, Hennink WE, De Smedt SC, Demeester J (2004) Macromolecules 37:8739

    Article  CAS  Google Scholar 

  28. Sairam M, Babu VR, Naidu BVK, Aminabhavi TM (2006) Int J Pharm 320:131

    Article  CAS  Google Scholar 

  29. Zhang H, Gao S (2007) Int J Pharm 329:122

    Article  CAS  Google Scholar 

  30. Rajvaidya S, Bajpai R, Bajpai AK (2005) Bull Mater Sci 28:529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the MIUR (Programma di ricerca di rilevante interesse nazionale 2008) and the University funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Iemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spizzirri, U.G., Iemma, F., Altimari, I. et al. Grafted gelatin microspheres as potential pH-responsive devices. J Mater Sci 47, 3648–3657 (2012). https://doi.org/10.1007/s10853-011-6211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6211-3

Keywords

Navigation