Skip to main content
Log in

Impact of nano-geothermal silica waste and chloride content on pore solution, microstructure, and hydration products in Portland cement pastes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation was carried out on pastes of Portland cement partially substituted by a geothermal silica waste (GSW), which was obtained as a byproduct from a power plant that uses geothermal underground resources. The waste is predominantly nanometric amorphous silica with sodium and potassium chlorides. Pastes containing 0, 10, and 20% GSW and 0, 10, and 20% chlorides by weight of GSW were cured at 20 and 60 °C in order to evaluate the phases formed in the presence of chlorides by means of scanning electron microscopy. The calcium hydroxide consumption was followed using X-ray diffraction. Pore solution tests were performed utilizing a leaching method, which is an alternative technique that could provide an easier and more efficient analysis method compared to the conventional pore expression methodology requiring high pressures and special equipment. The results indicated that the blended cements showed an intense consumption of calcium hydroxide by the pozzolanic reaction and a more compact matrix of hydration products. Furthermore, the high concentration of chlorides provided by the GSW affected the pore solution, reducing the pH, and increasing the concentration of sodium and potassium ions. These were related to the formation of Friedel′s salt, which could be correlated with the reduction in chloride content in the aqueous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.wbcsdcement.org/GNR-2009/index.html.

References

  1. Shi C, Fernandez Jimenez A, Palomo A (2011) Cem Concr Res 41:750

    Article  CAS  Google Scholar 

  2. Toutanji HA, El-Korchi T (1995) Cem Concr Res 25:1591

    Article  CAS  Google Scholar 

  3. Nehdi M, Duquette J, Eldamaty A (2003) Cem Concr Res 33:1203

    Article  CAS  Google Scholar 

  4. Anderson D, Roy A, Seales RK, Cartledege FK, Akhter H, Jones SC (2000) Cem Concr Res 30:437

    Article  CAS  Google Scholar 

  5. Cheng-Yi H, Feldman RF (1985) Cem Concr Res 15:582

    Google Scholar 

  6. Yogendran V, Langan BW, Ward MA (1991) Cem Concr Res 21:691

    Article  CAS  Google Scholar 

  7. Escalante-Garcia JI, Sharp JH (1998) Cem Concr Res 28:1259

    Article  CAS  Google Scholar 

  8. Gómez-Zamorano LY, Escalante-García JI, Mendoza-Suárez G (2004) J Mater Sci 39:4021. doi:10.1023/B:JMSC.0000031486.70227.dc

    Article  Google Scholar 

  9. Gomez-Zamorano LY, Escalante JI (2010) Mater Construcc 59:5

    Article  Google Scholar 

  10. Lorenzo Garcia MP (1993) Dissertation, Universidad de España, Banco de España

  11. Fraay ALA, Bijen JM, Haan YM (1989) Cem Concr Res 19:235

    Article  CAS  Google Scholar 

  12. Glass GK, Buenfeld NR (1995) In: Proceedings of the international RILEM workshop, Saint-Remy-Les-Chevreuse

  13. Castellote M, Alonso MC, Andrade C (2002) Mater Construcc 52:39

    Article  CAS  Google Scholar 

  14. Castellote M, Alonso C, Andrade C, Castro P, Echeverría M (2001) Cem Concr Res 31:233

    Article  CAS  Google Scholar 

  15. Lothenbach B, Winnefeld F, Alder C, Wieland E, Lunk P (2007) Cem Concr Res 37:483

    Article  CAS  Google Scholar 

  16. Ramlochan T, Thomas M, Gruber KA (2000) Cem Concr Res 30:339

    Article  CAS  Google Scholar 

  17. Ichikawa T (2009) Cem Concr Res 39:716

    Article  CAS  Google Scholar 

  18. Scrivener KL (2004) Cem Concr Compos 26:935

    Article  CAS  Google Scholar 

  19. Zhao H, Darwin D (1992) Cem Concr Res 22:695

    Article  CAS  Google Scholar 

  20. Gomez-Zamorano LY, Escalante-García JI (2010) Cem Concr Compos 32:603

    Article  CAS  Google Scholar 

  21. Rémond S, Bentz DP, Pimienta P (2002) Cem Concr Res 32:565

    Article  Google Scholar 

  22. Escalante-Garcia JI, Sharp JH (1998) Cem Concr Res 28:1245

    Article  CAS  Google Scholar 

  23. Copeland LE, Kantro DL (1968) Main Paper 5th Intl Symp Chem Cem 2:387

    Google Scholar 

  24. Kjellsen KO, Detwiler RJ, Gjorv OE (1990) Cem Concr Res 20:308

    Article  CAS  Google Scholar 

  25. Okada K, Nishibayashi S, Kawamura M (1989) In: Proceedings of the 8th international conference on alkali-aggregate reaction, Kyoto

  26. Bonen D, Diamond S (1992) Cem Concr Res 22:1059

    Article  CAS  Google Scholar 

  27. Maas AJ, Ideker JH, Juenger MCG (2007) Cem Concr Res 37:166

    Article  CAS  Google Scholar 

  28. Baron J, Ollivier JP (1992) In: La durabilité des Bétons. Presse de l’École Nationale des Ponts et Chaussées, Paris

  29. Duchesne J, Bérubé MA (1994) Cem Concr Res 24:73

    Article  CAS  Google Scholar 

  30. Ferraris CF (1995) In: Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899. NISTIR5742

  31. Justnes H (1999) In: SINTEF Civil and Environmental Engineering. Cement and Concrete, N-7034 Trondheim

  32. Ping Y, Kirkpatrick RJ (2001) Cem Concr Res 31:1479

    Article  Google Scholar 

  33. Suryavanshi AK, Scantlebury JD, Lyon SB (1996) Cem Concr Res 26:717

    Article  CAS  Google Scholar 

  34. Maltais Y, Marchand J (2005) In: Young F, Skalny J (eds) Materials concrete science VII. The American Ceramic Society, Westerville, OH, pp 181–208

  35. Escalante JI, Sharp JH (1999) J Am Ceram Soc 82:3237

    Article  Google Scholar 

  36. Yang R, Lawrence CD, Lynsdale CJ, Sharp JH (1999) Cem Concr Res 29:17

    Article  CAS  Google Scholar 

  37. Brown W, Bothe JB (1993) Adv Cem Res 5:47

    CAS  Google Scholar 

  38. Hime WG, Marusin SL (1999) In: Erlin B (ed) Proceedings of Ettringite, the sometimes host of destruction, vol. SP 177. ACI, Farmington

  39. Ramlochan T, Thomas MDA, Hooton RD (2004) Cem Concr Res 34:1341

    Article  CAS  Google Scholar 

  40. Hong Y, Glasser FP (1999) Cem Concr Res 29:1893

    Article  CAS  Google Scholar 

  41. Berry EE, Hemmings RT, Cornelius BJ (1990) Cem Concr Compos 12:253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from CONACYT-México, and PAICYT UANL is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LY Gómez-Zamorano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iñiguez-Sánchez, C., Gómez-Zamorano, L. & Alonso, M. Impact of nano-geothermal silica waste and chloride content on pore solution, microstructure, and hydration products in Portland cement pastes. J Mater Sci 47, 3639–3647 (2012). https://doi.org/10.1007/s10853-011-6210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6210-4

Keywords

Navigation