Skip to main content
Log in

Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium alloy (AZ31) based metal matrix composite reinforced with carbon nanotubes (CNTs) was fabricated using the technique of disintegrated melt deposition followed by hot extrusion. In this research paper, the microstructure, hardness, tensile properties, tensile fracture, high cycle fatigue characteristics, and final fracture behavior of CNTs-reinforced magnesium alloy composite (denoted as AZ31/1.0 vol.% CNT or AZ31/CNT) is presented, discussed, and compared with the unreinforced counterpart (AZ31). The elastic modulus, yield strength, tensile strength of the reinforced magnesium alloy was noticeably higher compared to the unreinforced counterpart. The ductility, quantified both by elongation-to-failure and reduction in cross-section area of the composite was higher than the monolithic counterpart. A comparison of the CNT-reinforced magnesium alloy with the unreinforced counterpart revealed a noticeable improvement in cyclic fatigue life at the load ratios tested. At all values of maximum stress, both the reinforced and unreinforced magnesium alloy was found to degrade the cyclic fatigue life at a lower ratio, i.e., under conditions of fully reversed loading. The viable mechanisms responsible for the enhanced cyclic fatigue life and tensile behavior of the composite are rationalized in light of macroscopic fracture mode and intrinsic microscopic mechanisms governing fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Szaraz Z, Palcek P, Chalupova M, Trojanova Z (2011) In: Czerwinski F (ed) Magnesium alloys—design, processing and properties. InTech publications

  2. Srivatsan TS, Sudarshan TS (1993) Rapid solidification technology: an Engineers guide. Technomic Publishing Company, Lancaster, p 603

    Google Scholar 

  3. Avedesian MM, Baker H (eds) (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International, Materials Park, OH

    Google Scholar 

  4. Srivatsan TS, Vasudevan Satish, Petraroli M (2008) J Alloys Compd 461:154

    Article  CAS  Google Scholar 

  5. Jayamathy M, Kailas SV, Kumar K, Seshan S, Srivatsan TS (2005) Mater Sci Eng A 393:27

    Article  Google Scholar 

  6. Srivatsan TS, Al-Hajri Meslet, Lam PC (2005) Composites: Part B 36:209

    Article  Google Scholar 

  7. Seshan S, Jayamathy M, Kailas SV, Srivatsan TS (2003) Mater Sci Eng A 363:345

    Article  Google Scholar 

  8. Ho KF, Gupta M, Srivatsan TS (2004) Mater Sci Eng A 369:302

    Article  Google Scholar 

  9. Paramsothy M, Chan J, Kwok R, Gupta M (2011) J Alloy Compos 509:7572

    Article  CAS  Google Scholar 

  10. Paramsothy M, Hasan SF, Srikanth N, Gupta M (2009) Mater Sci Eng A 527:162

    Article  Google Scholar 

  11. Wang J, Guo J, Chen L (2006) Trans Nonferrous Met Soc China 16:892

    Article  CAS  Google Scholar 

  12. Goh CS, Wei J, Lee LC, Gupta M (2006) Nanotechnology 17:7

    Article  CAS  Google Scholar 

  13. Thakur SK, Srivatsan TS, Gupta M (2007) Mater Sci Eng A 466:32

    Article  Google Scholar 

  14. Habibi MK, Paramsothy M, Hamouda AMS, Gupta M (2011) J Mater Sci 46:4588. doi:10.1007/s10853-011-5358-2

    Article  CAS  Google Scholar 

  15. Paramsothy M, Gupta M, Chan J, Kwok R (2011) Mater Sci Appl 2:20

    CAS  Google Scholar 

  16. Paramsothy M, Hassan SF, Srikanth N, Gupta M (2009) Composites: Part A 40(9):1490

    Article  Google Scholar 

  17. Liu S, Gao F, Zhang Q, Zhu X, Li W (2010) Trans Nonferrous Met Soc China 20:1222

    Article  CAS  Google Scholar 

  18. Fukuda H, Kondoh K, Umeda J, Fugetsu B (2011) Compos Sci Technol 71:705

    Article  CAS  Google Scholar 

  19. Paramsothy M, Hasan SF, Srikanth N, Gupta M (2010) J Nanosci Nanotechnol 10:956

    Article  CAS  Google Scholar 

  20. Paramsothy M, Chan J, Kwok R, Gupta M (2011) Composites: Part A 42:180

    Article  Google Scholar 

  21. Ochi Y, Masaki K, Matsumura T, Wadasako M (2007) Mater Sci Eng A 468–470:230

    Google Scholar 

  22. Llorca N, Bloyce A, Yue TM (1991) Mater Sci Eng A 135:247

    Article  Google Scholar 

  23. Riehemann W, Trojanová Z, Mielczarek A (2010) Proc Eng 2:2151

    Article  Google Scholar 

  24. Mielczarek A, Riehemann W, Trojanová Z, Lukac P (2007) Mater Sci Eng A 462:230

    Article  Google Scholar 

  25. Tham LM, Gupta M, Cheng L (1999) Mater Sci Technol 15:1139

    CAS  Google Scholar 

  26. Gupta M, Lai MO, Lim SC (1997) J Alloys Compd 260:250

    Article  CAS  Google Scholar 

  27. Gupta M, Srivatsan TS (1999) J Mater Eng Perform 8(4):473

    Article  CAS  Google Scholar 

  28. Ling PS, Gupta M, Lai MO, Srivatsan TS (2000) Aluminum Trans Int J 2(2):209

    CAS  Google Scholar 

  29. Ganesh VV, Gupta M, Srivatsan TS (2002) In: Journal of Recent Research Developments in Materials Science and Engineering, p 119, ISBN: 81-7895-057-X

  30. American Society for Testing and Materials (2003) Standard Test Method for Cyclic Fatigue Testing of Materials E-466, American Society for Testing and Materials, Philadelphia, PA

  31. Nguyen QB, Gupta M (2008) J Alloys Compd 459:244

    Article  CAS  Google Scholar 

  32. Marya M, Hector LG, Verma R, Tong W (2006) Mater Sci Eng A 418:341

    Article  Google Scholar 

  33. Srivatsan TS, Annigeri R (2000) Metall Mater Trans 31A:959

    CAS  Google Scholar 

  34. Starke EA Jr (1979) In: Meshii M (ed) Fatigue and microstructure. American Society for Metals, Metals Park, OH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Srivatsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, T.S., Godbole, C., Paramsothy, M. et al. Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy. J Mater Sci 47, 3621–3638 (2012). https://doi.org/10.1007/s10853-011-6209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6209-x

Keywords

Navigation