Skip to main content

High surface area nanostructured tubes prepared by dissolution of ALD-coated electrospun fibers

Abstract

Novel nanostructured and high surface area tubular materials were produced combining electrospinning and atomic layer deposition processes with the removal of polymeric template via dissolution. The dissolution process changed the structure of the tube walls, and the smooth atomic layer deposition coating was transformed into a highly complex, coral-like structure. This material, which we have called “nanocoral,” has a relatively high surface area, 323 m2 g−1, due to the interconnected cavities formed after the removal of the template. This kind of material has important potential applications, for example, in the fields of catalysts and filtration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Baddour CE, Briens C (2005) Int J Chem React Eng 3:R3

    Google Scholar 

  3. Liu Y, Liu M (2005) Adv Funct Mater 15:57

    Article  Google Scholar 

  4. Li Z, Wang H, Liu P, Zhao B, Zhang Y (2009) Appl Surf Sci 255:4470

    Article  CAS  Google Scholar 

  5. Chou SH, Wang JZ, Liu HK, Dou SX (2009) Electrochem Commun 11:242

    Article  CAS  Google Scholar 

  6. Wang Y, Lee JY, Zeng HC (2005) Chem Mater 17:3899

    Article  CAS  Google Scholar 

  7. Lai M, Lim JH, Mubeen S, Rheem Y, Mulchandani A, Deshusses MA, Myung NV (2009) Nanotechnology 20:185602

    Article  Google Scholar 

  8. Bognitzki M, Hou HQ, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Adv Mater 12:637

    Article  CAS  Google Scholar 

  9. Greiner A, Wendorff JH, Steinhart M (2004) Nachr Chem 52:426

    Article  CAS  Google Scholar 

  10. Heikkilä P, Harlin A, Vähä-Nissi M (2011) Tubes by fibre templates with two nanofabrication processes electrospinning and atomic layer deposition. NN11, 12–15 July 2011, Thessaloniki, Greece

  11. Choi SW, Park JY, Kim SS (2009) Nanotechnology 20:465603

    Article  Google Scholar 

  12. Oldham CJ, Gong B, Spagnola JC, Jur JS, Senecal KJ, Godfrey TA, Parsons GN (2010) ECS Trans 33:279

    Article  CAS  Google Scholar 

  13. Park JY, Choi SW, Kim SS (2010) Nanotechnology 21:475601

    Article  Google Scholar 

  14. Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) Nanotechnology 21:245605

    Article  Google Scholar 

  15. Santala E, Hämäläinen J, Lu J, Leskelä M, Ritala M (2009) Nanosci Nanotechnol Lett 1:218

    Article  CAS  Google Scholar 

  16. Santala E, Kemell M, Leskelä M, Ritala M (2009) Nanotechnology 20:035602

    Article  Google Scholar 

  17. Peng Q, Sun XY, Spangola JC, Hyde GK, Spontak RJ, Parsons GN (2007) Nano Lett 7:719

    Article  CAS  Google Scholar 

  18. Sun XY, Peng Q, Borner HG, Parsons GN, Spontak RJ (2007) PMSE Prepr 97:53

    CAS  Google Scholar 

  19. Saquing CD, Peng Q, Parsons GN, Khan SA (2008) Metal nanoparticle-loaded Al2O3 microtubes by atomic layer deposition of nanofiber composite templates, 235th ACS national meeting, New Orleans, 6–10 April 2008

  20. Peng Q, Sun XY, Spagnola JC, Saquing C, Khan SA, Spontak RJ, Parsons GN (2009) ACS Nano 3:546

    Article  CAS  Google Scholar 

  21. Kim GM, Lee SM, Michler GH, Roggendorf H, Gosele U, Knez M (2008) Chem Mater 20:3085

    Article  CAS  Google Scholar 

  22. Leskelä M, Kemell M, Kukli K, Pore V, Santala E, Ritala M, Lu J (2007) Mater Sci Eng C27:1504

    Google Scholar 

  23. Li D, Xia Y (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  24. Ko FK (2004) NATO Sci Ser II 169:1

    Article  CAS  Google Scholar 

  25. Heikkilä P (2008) Nanostructured fiber composites, and materials for air filtration. Doctoral dissertation, Tampere University of Technology

  26. Theron SA, Zussman E, Yarin AL (2004) Polymer 45:2017

    Article  CAS  Google Scholar 

  27. Heikkilä P, Harlin A (2008) Eur Polym J 44:3067

    Article  Google Scholar 

  28. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Polymer 46:6128

    Article  CAS  Google Scholar 

  29. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Tech 63:2223

    Article  CAS  Google Scholar 

  30. Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH (2005) Polym Adv Technol 16:276

    Article  CAS  Google Scholar 

  31. Sun Z, Zeng J, Hou H, Wickel H, Wendorff JH, Greiner A (2005) Prog Colloid Polym Sci 130:15

    CAS  Google Scholar 

  32. Czaplewski DA, Kameoka J, Mathers R, Coates GW, Craighead HG (2003) Appl Phys Lett 83:4836

    Article  CAS  Google Scholar 

  33. Atkinson A, Ochanda F, Jones WE (2004) 228th ACS National Meeting, Philadelphia, 22–26 August 2004, CHED-128

  34. Ochanda F, Atkinson A, WE Jones Jr (2003) Polym Prepr 44:161

    CAS  Google Scholar 

  35. Dong H, Prasad S, Nyame V, Jones WE Jr (2004) Chem Mater 16:371

    Article  CAS  Google Scholar 

  36. Jones W Jr, Dong H, Megalamane U, Ochanda F, Nyame V (2003) Polym Prepr 44:104

    CAS  Google Scholar 

  37. Abidian MR, Kim DH, Martin DC (2006) Adv Mater 18:405

    Article  CAS  Google Scholar 

  38. Leskela M, Ritala M (2002) Thin Solid Films 409:138

    Article  CAS  Google Scholar 

  39. Leskelä M, Ritala M (2003) Electron Mater 42:5548

    Google Scholar 

  40. George SM (2010) Chem Rev 110:111

    Article  CAS  Google Scholar 

  41. Ritala M, Leskelä M (2002) In: Nalwa HS (ed) Handbook of thin film materials. Academic Press, San Diego, p 103

    Google Scholar 

  42. Puurunen RL (2005) J Appl Phys 97:121301

    Article  Google Scholar 

  43. Groner MD, Fabreguette FH, Elam JW, George SM (2004) Chem Mater 16:639

    Article  CAS  Google Scholar 

  44. Hirvikorpi T, Vähä-Nissi M, Harlin A, Marles J, Miikkulainen V, Karppinen M (2010) Appl Surf Sci 257:736

    Article  CAS  Google Scholar 

  45. Hirvikorpi T, Vähä-Nissi M, Harlin A, Karppinen M (2010) Thin Solid Films 518:5463

    Article  CAS  Google Scholar 

  46. Hirvikorpi T, Vähä-Nissi M, Mustonen T, Iiskola E, Karppinen M (2010) Thin Solid Films 518:2654

    Article  CAS  Google Scholar 

  47. Hirvikorpi T, Vähä-Nissi M, Nikkola J, Harlin A, Karppinen M (2011) Surf Coat Tech 205:5088

    Article  CAS  Google Scholar 

  48. Hirvikorpi T, Vähä-Nissi M, Vartiainen J, Penttilä P, Nikkola J, Harlin A, Serimaa R, Karppinen M (2011) J Appl Polym Sci 122:2221

    Article  CAS  Google Scholar 

  49. Hirvikorpi T, Vähä-Nissi M, Harlin A, Salomäki M, Areva S, Korhonen JT, Karppinen M (2011) Appl Surf Sci 257:9451

    Article  CAS  Google Scholar 

  50. Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Chem Mater 15:3507

    Article  CAS  Google Scholar 

  51. Daub M, Knez M, Goesele U, Nielsch K (2007) J Appl Phys 101:09J111

    Google Scholar 

  52. Heikkilä P, Söderlund L, Uusimäki J, Kettunen L, Harlin A (2007) Polym Eng Sci 47:2065

    Article  Google Scholar 

  53. Koski A, Yim K, Shivkumar S (2004) Mater Lett 58:493

    Article  CAS  Google Scholar 

  54. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Eur Polym J 41:423

    Article  CAS  Google Scholar 

  55. Tao J, Shivkumar S (2007) Mater Lett 61:2325

    Article  CAS  Google Scholar 

  56. Lee JS, Choi KH, Ghim HD, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) J Appl Polym Sci 93:1638

    Article  CAS  Google Scholar 

  57. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Chem Mater 15:1860

    Article  CAS  Google Scholar 

  58. Keun Son W, Ho Youk J, Seung Lee T, Park WH (2005) Mater Lett 59:1571

    Article  Google Scholar 

  59. Elam JW, Libera JA, Huynh TH, Feng H, Pellin MJ (2010) J Phys Chem C 114:17286

    Article  CAS  Google Scholar 

  60. Carcia PF, McLean RS, Groner MD, Dameron AA, George SM (2009) J Appl Phys 106:023533

    Article  Google Scholar 

  61. Groner MD, George SM, McLean RS, Carcia PF (2006) Appl Phys Lett 88:051907

    Article  Google Scholar 

  62. Liang X, King DM, Groner MD, Blackson JH, Harris JD, George SM, Weimer AW (2008) J Membr Sci 322:105

    Article  CAS  Google Scholar 

  63. Wilson CA, Grubbs RK, George SM (2005) Chem Mater 17:5625

    Article  CAS  Google Scholar 

  64. Ferguson JD, Weimer AW, George SM (2004) Chem Mater 16:5602

    Article  CAS  Google Scholar 

  65. Wilson CA, Groner MD, Ferguson JD, George SM (2004) PMSE Prepr 90:729

    CAS  Google Scholar 

  66. Elam JW, Xiong G, Han CY, Wang HH, Birrell JP, Welp U, Hryn JN, Pellin MJ, Baumann TF, Poco JF, Satcher JH Jr (2006) J Nanomater 2006, Art No 64501, pp 1–5

  67. Hou H, Jun Z, Reuning A, Schaper A, Wendorff JH, Greiner A (2002) Macromolecules 35:2429

    Article  CAS  Google Scholar 

  68. Wang M, Guo DJ, Li H (2005) J Solid State Chem 178:1996

    Article  CAS  Google Scholar 

  69. Chen Z, Waje M, Li W, Yan Y (2007) Angew Chem 119:4138

    Article  Google Scholar 

  70. Idakieva V, Yuanb ZY, Tabakovaa T, Sub BL (2005) Appl Catal A 281:149

    Article  Google Scholar 

  71. Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Béguin F, Blau WJ (2004) Nano Lett 4:353

    Article  CAS  Google Scholar 

  72. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Nat Mater 3:510

    Article  Google Scholar 

  73. Schmitz B, Mueller U, Trukhan N, Schubert M, Ferey G, Hirscher M (2008) Chem Phys Chem 9:2181

    Article  CAS  Google Scholar 

  74. Biener J, Wittstock A, Baumann TF, Weissmuller J, Baumer M, Hamza AV (2009) Materials 2:2404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirjo Heikkilä.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heikkilä, P., Hirvikorpi, T., Hilden, H. et al. High surface area nanostructured tubes prepared by dissolution of ALD-coated electrospun fibers. J Mater Sci 47, 3607–3612 (2012). https://doi.org/10.1007/s10853-011-6207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6207-z

Keywords

  • Atomic Layer Deposition
  • Electrospun Fiber
  • High Aspect Ratio Structure
  • Atomic Layer Deposition Method
  • Atomic Layer Deposition Coating