Skip to main content
Log in

Enhancing the anti-cracking performance of perfluorosulfonic acid membranes for implantable biosensors through supercritical CO2 treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to the outstanding stability, biocompatibility, and permeability, perfluorosulfonic acid (PFSA) membranes can be used to protect biosensors in biological environment. However, mineralization induced cracking hinders their in vivo applications for long duration. Various methods including anneal, preincubation in FeCl3 solution, and layer-by-layer self assembly were attempted to improve their anti-cracking performance, but only met with limited success. In this study, a new method, namely supercritical carbon dioxide (Sc-CO2) treatment was developed to enhance the anti-cracking performance of PFSA membranes. After being incubated in cell culture medium for 12 weeks, while the pristine membranes undergone intense cracking, their Sc-CO2 treated counterparts kept almost intact. Small-angle X-ray scattering and wide-angle X-ray diffraction results revealed the more perfect structure in the treated membranes. Meanwhile, the crystalline structure of pristine membranes was obviously destroyed after cultivation, whereas the treated membranes exhibited little change. The increased crystallinity and reduced ionic clusters size of the Sc-CO2 treated membranes are responsible to the greatly enhanced anti-cracking performance. In addition, such improvement paves the way for the applications of PFSA membranes in implantable biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turner RFB, Harrison DJ, Rojotte RV (1991) Biomaterials 12:361

    Article  CAS  Google Scholar 

  2. Moussy F, Harrison DJ, O’Brien DW, Rajotte RV (1993) Anal Chem 65:2072

    Article  CAS  Google Scholar 

  3. Moussy F, Harrison DJ (1994) Anal Chem 66:674

    Article  CAS  Google Scholar 

  4. Mǎdǎras MB, Buck RP (1996) Anal Chem 68:3832

    Article  Google Scholar 

  5. Moussy F, Jakeway S, Harrlson DJ, Rajotte RV (1994) Anal Chem 66:3882

    Article  CAS  Google Scholar 

  6. Haworth B, Gilbert M, Myers DJB (2005) J Mater Sci 40:955. doi:10.1007/s10853-005-6514-3

    Article  CAS  Google Scholar 

  7. Wisniewski N, Reichert M (2000) Colloid Surf B 18:197

    Article  CAS  Google Scholar 

  8. Mercado RC, Moussy F (1998) Biosens Bioelectron 13:133

    Article  CAS  Google Scholar 

  9. Valdes TI, Moussy F (1999) Biosens Bioelectron 14:579

    Article  CAS  Google Scholar 

  10. Galeska I, Chattopadhyay D, Moussy F, Papadimitrakopoulos F (2000) Biomacromolecules 1:202

    Article  CAS  Google Scholar 

  11. Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) J Macromol Sci A 39:1207

    Article  Google Scholar 

  12. Su LJ, Li L, Li H, Zhang YM, Yu W, Zhou CX (2009) J Membr Sci 335:118

    Article  CAS  Google Scholar 

  13. Luan YH, Zhang YM, Zhang H, Li L, Li H, Liu YG (2008) J Appl Polym Sci 107:396

    Article  CAS  Google Scholar 

  14. Luan YH, Zhang H, Zhang YM, Li L, Li H, Liu YG (2008) J Membr Sci 319:91

    Article  CAS  Google Scholar 

  15. Shang FJ, Li L, Zhang YM, Li H (2009) J Mater Sci 44:4383. doi:10.1007/s10853-009-3658-6

    Article  CAS  Google Scholar 

  16. Hensley JE, Way JD, Dec SF, Abney KD (2007) J Membr Sci 298:190

    Article  CAS  Google Scholar 

  17. Fujimura M, Hashimoto T, Kawai H (1981) Macromolecules 14:1309

    Article  CAS  Google Scholar 

  18. Fujimura M, Hashimoto T, Kawai H (1982) Macromolecules 15:136

    Article  CAS  Google Scholar 

  19. Wang F, Li MS, Lu YP, Ge SS (2005) J Mater Sci 40:2073. doi:10.1007/s10853-005-1238-y

    Article  CAS  Google Scholar 

  20. Spanos N, Misirlis DY, Kanellopoulou DG, Koutsoukos PG (2006) J Mater Sci 41:1805. doi:10.1007/s10853-006-2952-9

    Article  CAS  Google Scholar 

  21. Suzuki S, Grondahl L, Leavesley D, Wentrup-Byrne E (2005) Biomaterials 26:5303

    Article  CAS  Google Scholar 

  22. Grøndahl L, Bostrom T, Cardona F, Chiem K, Wentrup-Byrne E (2003) J Mater Sci Mater Med 14:503

    Article  Google Scholar 

  23. Filmon R, Grizon F, Basle MF, Chappard D (2002) Biomaterials 23:3053

    Article  CAS  Google Scholar 

  24. Zhu PX, Masuda Y, Koumoto K (2004) Biomaterials 25:3915

    Article  CAS  Google Scholar 

  25. Akazawa T, Kobayashi M, Kanno T, Kodaira K (1998) J Mater Sci 33:1927. doi:10.1023/A:1004373809449

    Article  CAS  Google Scholar 

  26. Silva CC, Pinheiro AG, Figueiró SD, Góes JC, Sasaki JM, Miranda MAR, Sombra ASB (2002) J Mater Sci 37:2061. doi:10.1023/A:1015219800490

    Article  CAS  Google Scholar 

  27. Kamei S, Tomita N, Tamai S, Kato K, Ikada Y (1997) J Biomed Mater Res 37:384

    Article  CAS  Google Scholar 

  28. James K, Levene H, Parsons JR, Kohn J (1999) Biomaterials 20:2203

    Article  CAS  Google Scholar 

  29. Li SH, Liu Q, de Wijn JR, Zhou BL, Groot K (1997) Biomaterials 18:389

    Article  CAS  Google Scholar 

  30. Tanahashi M, Matsuda T (1997) J Biomed Mater Res 34:305

    Article  CAS  Google Scholar 

  31. Lim JS, Kim JH (2009) J Mater Sci 44:6398. doi:10.1007/s10853-009-3882-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “12th 5-year” National Key Technologies R&D Program of China (2011BAE08B00), the National Science Foundation of China (21104044), and the Shanghai Leading Academic Discipline Project (No. B202). The authors thank Shanghai Synchrotron Radiation Facility, SSRF, for the SAXS and XRD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supeng Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, F., Yuan, W.Z., Wang, Q. et al. Enhancing the anti-cracking performance of perfluorosulfonic acid membranes for implantable biosensors through supercritical CO2 treatment. J Mater Sci 47, 3602–3606 (2012). https://doi.org/10.1007/s10853-011-6206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6206-0

Keywords

Navigation