Skip to main content
Log in

Al2O3 nanoparticle reinforced Fe-based alloys synthesized by thermite reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is very difficult to manufacture oxide nanoparticle strengthened alloys through the conventional casting in the gravity field or even in the space microgravity environment. A thermite reaction process was used to produce molten metal that was then solidified in a graphite mold in super gravity field caused by centrifugal force; we were able to obtain Al2O3 nanoparticle reinforced Fe-based alloys. The formation of Al2O3 nanoparticles was related to the addition of TiO2 xerogel to the thermite mixture, and their uniform distribution in the alloy can be explained by their assembly in (Ni, Fe)Al intermetallics during solidification owing to the low interfacial energy between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wright IG, Wilcox BA, Jaffee RI (1975) Oxid Met 9:275

    Article  CAS  Google Scholar 

  2. Nagai H, Takebayashi Y, Mitani H (1981) Metallurg Trans A12:435

    Article  Google Scholar 

  3. Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Asabe K, Nishida T, Fujiwara M (1993) J Nucl Mater 204:65

    Article  CAS  Google Scholar 

  4. Busse P, Deuerler F, Pötschke J (1998) J Cryst Growth 193:413

    Article  CAS  Google Scholar 

  5. Sanin VN, Yukhvid VI, Sytschev AE, Sachkova NV (2010) Microgravity Sci Technol 22:53

    Article  CAS  Google Scholar 

  6. Calderon H, Fine ME (1984) Mater Sci Eng 63:197

    Article  CAS  Google Scholar 

  7. Taillard R, Mater A (1982) Sci Eng 54:209

    CAS  Google Scholar 

  8. Stallybrass C, Sauthoff G (2004) Mater Sci Eng A387–389:985

    Google Scholar 

  9. Xi W, Yin S, Guo S, Lai H (2000) J Mater Sci 35:45. doi:10.1023/A:1004776112579

    Article  CAS  Google Scholar 

  10. Xi W, Li N, Zhang T, Zhu W, Guo H (2010) J Alloys Compd 504S:414

    Article  Google Scholar 

  11. Wu W, Xi W (2011) Chin J Inorg Chem 27:659

    Google Scholar 

  12. Shui M, Song Y, Wang Q, Ren Y (2010) Curr Appl Phys 10:1360

    Article  Google Scholar 

  13. Baumli P, Sytchev J, Kaptay G (2010) J Mater Sci 45:5177. doi:10.1007/s10853-010-4555-8

    Article  CAS  Google Scholar 

  14. Triantafyllou G, Angelopoulos GN, Nikolopoulos P (2010) J Mater Sci 45:2015. doi:10.1007/s10853-009-4013-7

    Article  CAS  Google Scholar 

  15. Gregory SR (2011) J Mater Sci 46:5881. doi:10.1007/s10853-011-5677-3

    Article  Google Scholar 

  16. Kaptay G (1996) Mater Sci Forum 215–216:467

    Article  Google Scholar 

  17. Kostorz G (2001) Phase transformations in materials. WILEY-VCH, Weinheim

    Book  Google Scholar 

  18. Nikolopoulos P, Agathopoulos S, Tsoga A (1994) J Mater Sci 29:4393. doi:10.1007/BF00414227

    Article  CAS  Google Scholar 

  19. Sharan A, Cramb AW (1997) Metall Mater Trans B28:465

    Google Scholar 

  20. Silvain JF, Bihr JC, Douin (1998) J Compos Part A29:1175

    Article  Google Scholar 

  21. Digilov RM (2004) Surf Sci 555:68

    Article  CAS  Google Scholar 

  22. Kaptay G (2000) Mater Sci Forum 329–330:121

    Article  Google Scholar 

  23. Körber C, Rau G, Cosman MD, Cravalho EG (1985) J Cryst Growth 72:649

    Article  Google Scholar 

  24. Uhlmann DR, Chalmers B, Jackson KA (1964) J Appl Phys 35:2986

    Article  CAS  Google Scholar 

  25. Sen S, Dhindaw BK, Stefanescu DM, Catalina A, Curreri PA (1997) J Crys Growth 173:574

    Article  CAS  Google Scholar 

  26. Washizu T, Nagasaka T, Hino M (2001) Mate Trans 42:471

    Article  CAS  Google Scholar 

  27. Kang CG, Rohatgi PK (1996) Metall Mater Trans B27:277

    Google Scholar 

  28. Rothman M (1989) High-temperature property data: ferrous alloys. ASM International, Metals Park

    Google Scholar 

  29. Sims C, Stoloff N, Hagel W (1987) Superalloys II. Wiley, New York

    Google Scholar 

  30. Sokolov MA, Hoelzer DT, Stoller RE, McClintock DA (2007) J Nucl Mater 367–370:213

    Article  Google Scholar 

  31. Schäublin R, Ramar A, Baluc N, de Castro V, Monge MA, Leguey T, Schmid N, Bonjour C (2006) J Nucl Mater 351:247

    Article  Google Scholar 

  32. Pint BA, Wright IG (2005) Oxid Met 63:193

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC), Grant No. 51072011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, W., Peng, R.L., Wu, W. et al. Al2O3 nanoparticle reinforced Fe-based alloys synthesized by thermite reaction. J Mater Sci 47, 3585–3591 (2012). https://doi.org/10.1007/s10853-011-6204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6204-2

Keywords

Navigation