Skip to main content

Advertisement

Log in

Accelerated hydrogen desorption from MgH2 by high-energy ball-milling with Al2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the addition of Al2O3 (50 wt%) on the dehydrogenation of MgH2 was investigated. Composites of the oxide and the hydride were prepared in two ways: by milling the components separately or by co-milling them together in a gear-driven planetary ball mill for 10 min. The co-milled composite (MgH2–Al2O3) released approximately 90% of the maximum hydrogen storage capacity within 30 min under a pressure of 0.003 MPa at 250 °C. In contrast, the composite of the separately milled components did not release hydrogen even after 2 h under the same conditions. BET measurement with nitrogen gas showed a negligible difference in the specific surface areas between the co-milled and separately milled composites. However, the saturation amount of hydrogen gas for the co-milled composite was 30% larger than that of the mixture of separately milled hydride and oxide. The activation energy for hydrogen desorption from the co-milled composite, calculated on the basis of the surface-controlled model was 80 kJ mol−1, a value that is 50 kJ mol−1 lower than that of mixture of the separately milled MgH2 and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Züttel A (2003) Mater Today 6:24

    Article  Google Scholar 

  2. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Int J Hydrogen Energy 32:1121

    Article  CAS  Google Scholar 

  3. Schlapbach L, Züttel A (2001) Nature 414:353

    Article  CAS  Google Scholar 

  4. Barkhordarian G, Klassen T, Bormann R (2006) J Phys Chem B 110:11020

    Article  CAS  Google Scholar 

  5. Yuan H, An Y, Xu G, Chen C (2004) Mater Chem Phys 83:340

    Article  CAS  Google Scholar 

  6. Stampfer JF Jr, Holley CE Jr, Suttle JF (1960) J Am Chem Soc 82:3504

    Article  CAS  Google Scholar 

  7. Bogdanović B, Hartwig TH, Spliethoff B (1993) Int J Hydrogen Energy 18:575

    Article  Google Scholar 

  8. M. Yamaguchi, E Akiba (1994) In: RW Cahn, P Haasen, EJ Kramer (eds) Material science and technology, vol. 3B. VCH, New York, p 333

  9. Jain IP, Lal C, Jain A (2010) Int J Hydrogen Energy 35:5133

    Article  CAS  Google Scholar 

  10. Guo ZX, Shang C, Aguey-Zinsou KF (2008) J Eur Ceram Soc 28:1467

    Article  CAS  Google Scholar 

  11. Manchester FD, Khatamian D (1988) Mater Sci Forum 31:261

    Article  CAS  Google Scholar 

  12. Schlapbach L (1992). In: Surface and dynamic properties, applications. Springer, Berlin, p 328

  13. Nørskov JK, Houmøller A, Johansson PK, Lundqvist BI (1981) Phys Rev Lett 46(4):257

    Article  Google Scholar 

  14. Song MY (1995) J Mater Sci 30:1343. doi:10.1007/BF00356142

    Article  CAS  Google Scholar 

  15. Chen CP, Liu BH, Li ZP, Wu J, Wang QD (1993) Z Phys Chem 181(1e2):259

    Article  CAS  Google Scholar 

  16. Liang G, Wang E, Fang S (1995) J Alloy Compd 223(1):111

    Article  CAS  Google Scholar 

  17. Martin M, Gommel C, Borkhart C, Fromm E (1996) J Alloy Compd 238:193

    Article  CAS  Google Scholar 

  18. Chen J, Yang H, Xia Y, Kuriyama N, Xu Q, Sakai T (2002) Chem Mater 14:2834

    Article  CAS  Google Scholar 

  19. Vijay R, Sundaresan R, Maiya MP, Srinivasa Murthy S, Fu Y, Klein H-P, Groll M (2004) J Alloy Compd 384:283

    Article  CAS  Google Scholar 

  20. Huot J, Liang G, Boily S, Neste AV, Schulz R (1999) J Alloy Compd 293–295:495

    Article  Google Scholar 

  21. Zaluska A, Zaluski L, Ström-Olsen JO (2001) Appl Phys A 72:157

    Article  CAS  Google Scholar 

  22. Hanada N, Ichikawa T, Orimo S, Fujii H (2004) J Alloy Compd 366:269

    Article  CAS  Google Scholar 

  23. Hanada N, Ichikawa T, Hino S, Fujii H (2006) J Alloy Compd 420:46e9

    Article  Google Scholar 

  24. Li S, Jena P, Ahuja R (2006) Phys Rev B 74:132106

    Article  Google Scholar 

  25. Bassetti A, Bonetti E, Pasquini L, Montone A, Grbovic J, Antisari MV (2005) Eur Phys J B 43:19e27

    Article  Google Scholar 

  26. Berube V, Chen G, Dresselhaus MS (2008) Int J Hydrogen Energy 33:4122e31

    Google Scholar 

  27. Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R (2007) Int J Hydrogen Energy 32:2400

    Article  CAS  Google Scholar 

  28. Oelerich W, Klassen T, Bormann R (2001) J Alloy Compd 315:237

    Article  CAS  Google Scholar 

  29. Barkhordarian G, Klassen T, Bormann R (2003) Scr Mater 49:213

    Article  CAS  Google Scholar 

  30. Polanski M, Bystrzycki J, Plocinski T (2008) Int J Hydrogen Energy 33:1859

    Article  CAS  Google Scholar 

  31. Croston DL, Grant DM, Walker GS (2010) J Alloy Compd 492:251

    Article  CAS  Google Scholar 

  32. Patah A, Takasaki A, Szmyd JS (2009) Int J Hydrogen Energy 34:3032

    Article  CAS  Google Scholar 

  33. Liang G, Huot J, Boily S, Neste AV, Schulz R (1999) J Alloy Compd 292:247

    Article  CAS  Google Scholar 

  34. Varin RA, Czujko T, Wasmund EB, Wronski ZS (2007) J Alloy Compd 432:217

    Article  CAS  Google Scholar 

  35. Kodera Y, Yamasaki N, Miki J, Ohyanagi M, Shiozaki S, Fukui S, Yin J, Fukui T (2009) Ceram Trans 205:31

    CAS  Google Scholar 

  36. Gennari FC, Castro FJ, Urretavizcaya G (2001) J Alloy Compd 321:46

    Article  CAS  Google Scholar 

  37. Bortz M, Bertheville B, Böttger G, Yvon K (1999) J Alloy Compd 287:L4

    Article  CAS  Google Scholar 

  38. Halder NC, Wagner NCJ (1966) Acta Crystallogr 20:312

    Article  CAS  Google Scholar 

  39. Polanski M, Bystrzycki J (2009) J Alloy Compd 486:697

    Article  CAS  Google Scholar 

  40. Jung KS, Lee EY, Lee KS (2006) J Alloy Compd 421:179

    Article  CAS  Google Scholar 

  41. Friedrichs O, Aguey-Zinsou F, Ares Fernandez JR, Sanchez-Lopez JC, Justo A, Klassen T, Bormann R, Fernandez A (2005) Acta Mater 54:105

    Google Scholar 

  42. Varin RA, Czujko T, Wasmund EB, Wronski ZS (2007) J Alloy Compd 446–447:63

    Article  Google Scholar 

  43. Danaie M, Tao SX, Kalisvaart P, Mitlin D (2010) Acta Mater 58(8):3162

    Article  CAS  Google Scholar 

  44. Khawam A, Flanagan DR (2006) J Phys Chem B 110:17315

    Article  CAS  Google Scholar 

  45. Varin RA, Jang M, Czujko T, Wronski ZS (2010) J Alloy Compd 493:L29

    Article  CAS  Google Scholar 

  46. Wu G, Zhang J, Li Q, Wu Y, Chou K, Bao X (2010) Comput Mater Sci 49:S144

    Article  CAS  Google Scholar 

  47. Hanada N, Ichikawa Ti, Fujii H (2005) J Phys Chem B 109:7188

    Article  CAS  Google Scholar 

  48. Isobe S, Ono A, Yao H, Wang Y, Hashimoto N, Ohnuki S (2010) Appl Phys Lett 96(223109):1

    Google Scholar 

  49. Montone A, Aurora A, Gattia D, Antisari M (2010) Scr Mater 63:456

    Article  CAS  Google Scholar 

  50. Noritake T, Aoki M, Towata S, Seno Y, Hirose Y, Nishibori E, Takata M, Sakata M (2002) Appl Phys Lett 81:2008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial support of this study by a grant based on High-tech Research Center Program for private Universities from the Japan Ministry of Education, Culture, Sport, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manshi Ohyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, N., Miyazawa, H., Ohyanagi, M. et al. Accelerated hydrogen desorption from MgH2 by high-energy ball-milling with Al2O3 . J Mater Sci 47, 3577–3584 (2012). https://doi.org/10.1007/s10853-011-6203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6203-3

Keywords

Navigation