Skip to main content

Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres


The aim of this study is to throw new light on the influence of moisture on the mechanical properties of hemp fibres. Indeed, the behaviour of plant-based fibres strongly depends on their humidity. Although this topic has been relatively well treated for the case of wood, the literature on fibre stemming from annual plants is unfortunately poor. This purpose is, however, of great importance, particularly in view of the production of high-performance composites. The influence of environmental conditions on the static and dynamic tensile moduli and the strength of elementary fibres are investigated using a versatile experimental setup. Novel equipment was also designed to measure the rotation of a fibre about its axis when it was subjected to static loading and moisture variations. Water sorption is shown to have a significant influence on the apparent tensile stiffness, strength and fracture mode of such fibres, and is also shown to act like an activator of the stiffening phenomena under cyclic loading. A remarkable increase in the fibre stiffness of up to 250% is measured. Significant longitudinal elongation, reaching a value in excess of 2%, is associated with this increase in stiffness. The absorption and desorption of moisture also lead to substantial rotation of the fibre about its axis. Water sorption certainly involves a modification of the adhesion between cellulose microfibrils and the amorphous matrix. Under cyclic loading, the cellulose microfibrils could be able to creep into the relaxed amorphous matrix, leading to their re-arrangement, with more parallel orientations with respect to the fibre axis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Davies GC, Bruce DM (1998) Text Res J 68(9):623

    Article  CAS  Google Scholar 

  2. 2.

    Symington MC, Banks WM, West OD, Pethrick RA (2009) J Comp Mater 43(9):1083

    Article  CAS  Google Scholar 

  3. 3.

    Baley C, Morvan C, Grohens Y (2005) Macromol Symp 222:195

    Article  CAS  Google Scholar 

  4. 4.

    van Voorn B, Smit HHG, Sinke RJ, de Klerk B (2001) Composites: Part A 32:1271

    Article  Google Scholar 

  5. 5.

    Stamboulis A, Baillie CA, Peijs T (2001) Composites: Part A 32:1105

    Article  Google Scholar 

  6. 6.

    Astley OM, Donald AM (2001) Biomacromolecules 2:672

    Article  CAS  Google Scholar 

  7. 7.

    KhM Mannan, Robbany Z (1996) Polymer 37(20):4639

    Article  Google Scholar 

  8. 8.

    Lee JM, Pawlak LJ, Heitmann JA (2010) Mater Charac 61(1):507

    Article  CAS  Google Scholar 

  9. 9.

    Lee JM, Pawlak LJ, Heitmann JA (2007) Mater Sci Eng A 445–446:632

    Google Scholar 

  10. 10.

    Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) Bioresour Technol 99:7152

    Article  CAS  Google Scholar 

  11. 11.

    Watt IC, Kabir M (1975) Text Res J 45(1):42

    Article  Google Scholar 

  12. 12.

    Saikia D, Bora MN (2003) Indian J Pure Appl Phys 41(6):484

    CAS  Google Scholar 

  13. 13.

    Bourmaud A, Morvan C, Baley C (2010) Ind Crop Prod 32:662

    Article  CAS  Google Scholar 

  14. 14.

    Placet V, Passard J, Perré P (2008) J Mater Sci 43:3210. doi:10.1007/s10853-008-2546-9

    Article  CAS  Google Scholar 

  15. 15.

    Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perré P (2009) J Agric Food Chem 57(15):6830

    Article  CAS  Google Scholar 

  16. 16.

    Thygesen A (2006) Properties of hemp fibre polymer composites: an optimisation of fibre properties using novel defibration methods and fibre characterisation. PhD thesis, The Royal Agricultural and Veterinary University of Denmark, p 146

  17. 17.

    Duval A, Bourmaud A, Augier L, Baley C (2011) Mater Lett 65:797

    Article  CAS  Google Scholar 

  18. 18.

    Baley C (2002) Composites: Part A 33:939

    Article  Google Scholar 

  19. 19.

    Charlet K, Eve S, Jernot JP, Gomina M, Bréard J (2009) Procedia Eng 1:233

    Article  Google Scholar 

  20. 20.

    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Comp Part A 38:1912

    Article  Google Scholar 

  21. 21.

    Nilsson T, Gustafsson PJ (2007) Composites: Part A 38:1722

    Article  Google Scholar 

  22. 22.

    Placet V (2009) Composites: Part A 40:1111

    Article  Google Scholar 

  23. 23.

    Hearle JWS (1963) J Appl Polym Sci 7:1207

    Article  CAS  Google Scholar 

  24. 24.

    Placet V, Bouali A, Perré P (2011) Matériaux Tech. doi:10.1051/mattech/2011120

  25. 25.

    Obataya E, Norimoto M, Gril J (1998) Polymer 39(14):3059

    Article  CAS  Google Scholar 

  26. 26.

    Placet V, Trivaudey F, Cisse O, Guicheret-Retel V, Boubakar ML (2012) Composites: Part A 43:275

    Google Scholar 

  27. 27.

    Silva FA, Chawla N, Toledo Filho RD (2008) Comp Sci Tech 68:3438

    Article  CAS  Google Scholar 

  28. 28.

    Kompella MK, Lambros J (2002) Polym Test 21:523

    Article  CAS  Google Scholar 

  29. 29.

    Mc Laughlin EC, Tait RA (1980) J Mater Sci 15:89. doi:10.1007/BF00552431

    Article  Google Scholar 

  30. 30.

    Virk AS, Hall W, Summerscales J (2010) Comp Sci Tech 70:995

    Article  CAS  Google Scholar 

  31. 31.

    Virk AS, Hall W, Summerscales J (2009) Composites: Part A 40:1764

    Article  Google Scholar 

  32. 32.

    Joffe R, Andersons J, Wallström L (2003) Composites: Part A 34:603

    Article  Google Scholar 

  33. 33.

    Silva FA, Chawla N, Toledo Filho RD (2009) Mat Sci Eng A 516:90

    Article  Google Scholar 

  34. 34.

    Placet V, Bouali A, Garcin C, Cote JM, Perré P (2011) Suivi par DRX des réarrangements microstructuraux induits par sollicitations mécaniques dans les fibres végétales tirées du chanvre. 20th CFM, Besançon

  35. 35.

    Matinschitz KJ, Boesecke P, Garvey CJ, Gindl W, Keckes J (2008) J Mater Sci 43:350. doi:10.1007/s10853-006-1237-7

    Article  Google Scholar 

  36. 36.

    Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommach M, Müller M (2005) J Synchrotron Radiat 12:739

    Article  Google Scholar 

  37. 37.

    Astley OM, Donald AM (2003) J Mater Sci 38:165. doi:10.1023/A:1021186421194

    Article  CAS  Google Scholar 

  38. 38.

    Placet V (2010) Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena. 14th ICEM, Poitiers, France

  39. 39.

    K. Charlet (2008) Contribution à l’étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la microstructure de la fibre et ses propriétés mécaniques. PhD thesis, University of Caen, France

  40. 40.

    Bergfjord C, Holst B (2010) Ultramicroscopy 110:1192

    Article  CAS  Google Scholar 

Download references


The authors would like to thank Jean-Marc Côte and Camille Garcin from the FEMTO-ST for their assistance with some of the experiments, and Patrick Perré from the Ecole Centrale de Paris (Laboratoire de Génie des Procédés et Matériaux—Material Processes Engineering Laboratory) for their very fruitful and helpful discussions. We also thank Christine Millot for her technical contribution to the SEM characterisation of elementary fibres.

Author information



Corresponding author

Correspondence to Vincent Placet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Placet, V., Cisse, O. & Boubakar, M.L. Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J Mater Sci 47, 3435–3446 (2012).

Download citation


  • Hemp fibres
  • Tensile testing
  • Water sorption
  • Stiffening
  • Damage
  • DMA