Skip to main content
Log in

Multiwalled carbon nanotubes-supported Nickel catalysts for the steam reforming of propane

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs)-supported nickel catalysts with different metal-loading contents were synthesized trough deposition–precipitation (DP) method for its subsequent performance study on steam reforming reaction of propane. The metal-loading content was set at 5, 10, 20, and 25% of nickel. Results showed that 20 wt% nickel oxide over MWCNTs (20% NiO/MWCNTs) had the best performance, on the propane steam reforming reaction, in terms of H2 conversion comparing with the rest of the NiO/MWCNTs catalysts (5, 10, 25 wt% Ni) and a nickel over alumina (Ni/Al2O3) commercial catalyst. The features of the NiO/MWCNTs catalysts were studied trough FT-IR, Raman spectroscopy, N2 adsorption–desorption isotherms, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy measurements. The results evidenced that optimum relation between Ni content, Ni dispersion, and particle size played a main role in the catalyst performance, rendering the 20% NiO/MWCNT as the most promising, among the catalysts studied, for the steam reforming of propane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dincer I (2002) Int J Hydrog Energy 27:265

    Article  CAS  Google Scholar 

  2. Rakib MA, Grace JR, Lim CJ, Elnashaie SSEH, Ghiasi B (2010) Int J Hydrog Energy 35:6276

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR, Rostrup-Nielsen T (2002) CatTech 6:150

    Article  CAS  Google Scholar 

  4. Johnston B, Mayo MC, Khare A (2005) Technovation 25:569

    Article  Google Scholar 

  5. Ball M, Wietschel M (2009) Int J Hydrog Energy 34:615

    Article  CAS  Google Scholar 

  6. Jensen MB, Raberg LB, Sjastad AO, Olsbye U (2009) Catal Today 145:114

    Article  CAS  Google Scholar 

  7. Sánchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrog Energy 2:1462

    Article  Google Scholar 

  8. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345

    Article  CAS  Google Scholar 

  9. Benito M, Padilla R, Rodríguez L, Sanz JL, Daza L (2007) J Power Sources 169:167

    Article  CAS  Google Scholar 

  10. Seelam PK, Huuhtanen M, Sápi A, Szabó M, Kordás K, Turpeinen E, Tóth G, Keiski RL (2010) Int J Hydrog Energy 35:12588

    Article  CAS  Google Scholar 

  11. Hou T, Yuan L, Ye T, Gong L, Tu J, Yamamoto M, Torimoto Y, Li Q (2009) Int J Hydrog Energy 34:9095

    Article  CAS  Google Scholar 

  12. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  13. Yoo E, Okada T, Kizuka T, Nakamura J (2008) J Power Sources 180:221

    Article  CAS  Google Scholar 

  14. Pham-Huu C, Keller N, Ehret G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A 170:155

    Article  CAS  Google Scholar 

  15. Wang Y, Shah N, Huffman GP (2006) Energy Fuels 20:2612

    Article  CAS  Google Scholar 

  16. Ledoux MJ, Vieira R, Pham-Huu C, Keller N (2003) J Catal 216:333

    Article  CAS  Google Scholar 

  17. Rostrup-Nielsin JR, Sehested J, Nǿrskov JK (2002) Adv Catal 47:65

    Article  Google Scholar 

  18. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Abild-Pedersen F et al (2008) J Catal 259:147

    Article  CAS  Google Scholar 

  19. Rostrup-Nielsen JR (2000) Catal Today 63:159

    Article  CAS  Google Scholar 

  20. Trimm DL (1999) Catal Today 49:3

    Article  CAS  Google Scholar 

  21. Wang X, Gorte RJ (2002) Appl Catal A 224:209

    Article  CAS  Google Scholar 

  22. Malyala RV, Rode CV, Arai M, Hegde SG, Chaudhari RV (2000) Appl Catal A 193:71

    Article  CAS  Google Scholar 

  23. Kim MH, Lee EK, Jun JH, Kong SJ, Han GY, Lee BK, Lee TJ, Yoon KJ (2004) Int J Hydrog Energy 29:187

    Article  CAS  Google Scholar 

  24. Liao PH, Yang HM (2008) Catal Lett 121:274

    Article  CAS  Google Scholar 

  25. Takenaka S, Shigeta Y, Tanabe E, Otsuka K (2003) J Catal 220:468

    Article  CAS  Google Scholar 

  26. Takenaka S, Ogihara H, Yamanaka I, Otsuka K (2001) Appl Catal A 217:101

    Article  CAS  Google Scholar 

  27. Park C, Keane MA (2004) J Catal 221:386

    Article  CAS  Google Scholar 

  28. Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS (2004) Appl Catal A 276:231

    Article  CAS  Google Scholar 

  29. Van Dillen AJ, Terorde RJAM, Lensveld DJ, Geus JW, de Jong KP (2003) Catal 216:257

    Article  Google Scholar 

  30. Chang FW, Hsiao TJ, Shih JD (1998) Ind Eng Chem Res 37:3838

    Article  CAS  Google Scholar 

  31. Li J, Yan R, Xiao B, Liang DT, Du L (2008) Environ Sci Technol 42:6224

    Article  CAS  Google Scholar 

  32. Bitter JH, de Jong KP (2009) Carbon materials for catalysis. John Wiley & Sons, Inc, Chichester

    Google Scholar 

  33. Burattin P, Che M, Louis C (1997) J Phys Chem B 101:7060

    Article  CAS  Google Scholar 

  34. Burattin P, Che M, Louis C (1998) J Phys Chem B 102:2722

    Article  CAS  Google Scholar 

  35. Burattin P, Che M, Louis C (1999) J Phys Chem B 103:6171

    Article  CAS  Google Scholar 

  36. Van der Lee MK, Van Dillen AJ, Bitter JH, de Jong KP (2005) J Am Chem Soc 127:13573

    Article  Google Scholar 

  37. Hilgendorff M, Giersig M (2007) Colloid Surf A 292:83

    Article  Google Scholar 

  38. Kundu S, Wang Y, Xia W, Muhler M (2008) J Phys Chem C 112:16869

    Article  CAS  Google Scholar 

  39. Hung NT, Anoshkin IV, Dementjev AP, Katorov DV, Rakov EG (2008) Inorg Mater 44:219

    Article  CAS  Google Scholar 

  40. Wang C, Zhou G, Liu H, Wu J, Qiu Y, Gu BL, Duan W (2006) J Phys Chem B 110:10266

    Article  CAS  Google Scholar 

  41. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Carbon 46:833

    Article  CAS  Google Scholar 

  42. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E (2008) Carbon 46:196

    Article  CAS  Google Scholar 

  43. Su SH, Chiang WT, Lin CC, Yokoyama M (2008) Physica E 40:2322

    Article  CAS  Google Scholar 

  44. Solhy A, Machado BF, Beausoleil J, Gonçalves F, Kihn Y, Pereira MFR, Órfão JJM, Figueiredo JL, Faria JL, Serp P (2008) Carbon 46:1194

    Article  CAS  Google Scholar 

  45. Fernandes DM, Hechenleitner AA, Silva MF, Lima MK, Bittencourt S, Silva R, Melo MAC, Pineda EAG (2009) Mater Chem Phys 118:447

    Article  CAS  Google Scholar 

  46. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  47. Fisher J (2002) Acc Chem Res 35:1079

    Article  Google Scholar 

  48. Kim SD, Kim JW, Im JS, Kim YH, Lee YS (2007) J Fluorine Chem 128:60

    Article  CAS  Google Scholar 

  49. Wang X, Zhang F, Zhu X, Xia B, Chen J, Qiu S, Li J (2009) J Colloid Interface Sci 37:272

    Article  Google Scholar 

  50. Tavasoli A, Abbaslou RMM, Trepanierk M, Dalai AK (2008) Appl Catal A 345:134

    Article  CAS  Google Scholar 

  51. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA, Nakhaeipour A (2008) Fuel Process Technol 89:491

    Article  CAS  Google Scholar 

  52. Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Fuel Process Technol 90:367

    Article  Google Scholar 

  53. Kim HJ, Jeon KK, An KH, Kim C, Heo JG, Lim SC, Bae DJ, Lee YH (2003) Adv Mater 15:1757

    Article  CAS  Google Scholar 

  54. Couto GG, Klein JJ, Schereiner WH, Mosca DH, de Oliveira AJA, Zarbin AJG (2007) J Colloid Interface Sci 311:461

    Article  CAS  Google Scholar 

  55. Martis P, Venugopal BR, Delhalle J, Mekhalif Z (2011) J Solid State Chem 184:1245

    Article  CAS  Google Scholar 

  56. Bianchi CL, Cattania MG, Villa P (1999) Appl Surf Sci 462:202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, E., Kim, J., Shanmugharaj, A.M. et al. Multiwalled carbon nanotubes-supported Nickel catalysts for the steam reforming of propane. J Mater Sci 47, 2985–2994 (2012). https://doi.org/10.1007/s10853-011-6132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6132-1

Keywords

Navigation