Journal of Materials Science

, Volume 47, Issue 6, pp 2845–2855 | Cite as

Influence of aggregate mineralogy on alkali–silica reaction studied by X-ray powder diffraction and imaging techniques

  • Nicoletta Marinoni
  • Marco Voltolini
  • Lucia Mancini
  • Fiorenza Cella


Reliable assessment of the potential alkali reactivity of aggregate to develop deleterious alkali–silica reaction is essential for construction of durable concrete structures. The potential alkali reactivity of silicified limestone and two limestones has been investigated. Preliminary characterisation of aggregate was performed by optical and environmental scanning electron microscopy. X-ray powder diffraction peak profile analysis was used to predict the aggregates’ potential alkali reactivity. Samples were aged in accordance to the RILEM AAR-2 procedure and further characterised by means of optical and environmental scanning electron microscopy as well as by synchrotron X-ray microtomography, where quantitative analysis relative to damage due to the alkali–silica reaction (ASR) was performed by morphometric analysis of volume data. Results highlight that (1) the microstructural domain size and microstrain values extracted form XRPD line profile analysis seem to be good parameters for predicting the potential alkali reactivity of quartz in aggregate, and (2) the mineralogy of the aggregate influences the weathering products (i.e. aggregate dissolution, ASR gel growth and microcracking) due to ASR in cement-based materials.


Tridymite Weathered Sample Silicified Limestone Chert Fragment Aggregate Dissolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. Davide Salvioni (Mapei S.p.A) for his help during the ESEM observations on the selected samples.


  1. 1.
    Swamy RN (1992) The alkali-silica reaction in concrete. Blackie, GlasgowCrossRefGoogle Scholar
  2. 2.
    Stanton T (1940) In: Proceedings of the American Society for Civil Engineering, vol. 66, pp 1781–1811Google Scholar
  3. 3.
    Diamond S (1992) Strategic highway research program report (SHRP-C/UWP-92-601), p 470Google Scholar
  4. 4.
    Chatterji S (2005) Cem Concr Res 27:788CrossRefGoogle Scholar
  5. 5.
    Dent Glasser LS, Kataoka N (1981) In: Proceedings of the 5th international conference on alkali-aggregate reaction in concrete (ICAAR). Cape Town, South Africa, p 7Google Scholar
  6. 6.
    Jensen V (1993) Alkali aggregate reaction in southern Norway. Doctor Technicae thesis, Technical University of Trondheim, p 262Google Scholar
  7. 7.
    Benmore C, Monteiro JMP (2010) Cem Concr Res 40:892CrossRefGoogle Scholar
  8. 8.
    Ichikawa T, Miura M (2007) Cem Concr Res 37:1291CrossRefGoogle Scholar
  9. 9.
    Bulteel D, Garcia-Diaz E, Vernet C, Zanni H (2002) Cem Concr Res 32:1199CrossRefGoogle Scholar
  10. 10.
    Bažant Z, Murphy WP, Steffens A (2000) Cem Concr Res 30:419CrossRefGoogle Scholar
  11. 11.
    Kurtis KE, Monteiro PJM, Brown JT, Meyer Ilse (1998) Cem Concr Res 28:411CrossRefGoogle Scholar
  12. 12.
    Goltermann P (1995) ACI Mater J 92:58Google Scholar
  13. 13.
    Rivard P, Ballivy G, Gravel C, Saint-Pierre F (2010) Cem Concr Res 40:676CrossRefGoogle Scholar
  14. 14.
    RILEM AAR-1 (2003) Mater Struct 36:480CrossRefGoogle Scholar
  15. 15.
    Broekmans MATM (2002) The alkali-silica reaction: mineralogical and geochemical aspects of some Dutch concretes and Norwegian mylonites. In: Geologica Ultraiectina, vol 217, PhD-thesis. University of Utrecht, The Netherlands, p 144Google Scholar
  16. 16.
    Heijnen WMM, Larbi JA, Siemes AJH (1996) In: Proceedings of the 10th international conference on alkali-aggregate reaction in concrete (ICAAR), Melbourne, pp 109–116Google Scholar
  17. 17.
    Giovambattista A, Batic OR, Traversa L (1986) In: Proceedings of 7th international conference on alkali-aggregate reaction in concrete (ICAAR), Ottawa pp 408–412Google Scholar
  18. 18.
    Batic OR, Sota JD, Milanesi CA (2000) In: Proceedings of 11th international conference on alkali-aggregate reaction in concrete (ICAAR), Quebéc, pp 1–10Google Scholar
  19. 19.
    Batic OR, Giaccio G, Zerbino R (2004) In: Proceedings of 12th international conference on alkali-aggregate reaction in concrete (ICAAR), China, pp 436–441Google Scholar
  20. 20.
    Ponce JM, Sota JD, Batic OR (2003) In: 15 reunión tecnica de la asociación argentina de tecnologia del hormigón, Republica ArgentinaGoogle Scholar
  21. 21.
    Çopuroğlu O, Andiç-Çakir Ö, Broekmans MATM, Kühnel R (2009) Mater Charact 60:757Google Scholar
  22. 22.
    Ponce JM, Batic OR (2006) Cem Concr Res 36:1148CrossRefGoogle Scholar
  23. 23.
    Cella F, Marinoni N, Cerulli T, Salvioni D, Pavese A (2011) Advan Cem Res 23:97CrossRefGoogle Scholar
  24. 24.
    RILEM (2000) Mater Struct 33:283–289Google Scholar
  25. 25.
    Jenkins R, Gould RW, Gedcke D (1995) Quantitative X-ray spectrometry. Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Madsen IC, Scarlett NVY, Granswick LMD, Lwin T (2001) J Appl Crystallogr 34:409CrossRefGoogle Scholar
  27. 27.
    McCuster LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1992) J Appl Crystallogr 32:36CrossRefGoogle Scholar
  28. 28.
    Young RA (1993) The rietveld method. University Press, OxfordGoogle Scholar
  29. 29.
    Larson AC, Von Dreele RB (1986) General structure analysis system (GSAS). Los Alamos Natl Lab, Los AlamosGoogle Scholar
  30. 30.
    Toby BH (2001) J Appl Crystallogr 34:210CrossRefGoogle Scholar
  31. 31.
    Warren BE, Averbach BL (1952) J Appl Phys 23:497CrossRefGoogle Scholar
  32. 32.
    Lutterotti M (2010). Retrieved 22 Feb 2008
  33. 33.
    Marinoni N, Voltolini M, Mancini L, Vignola P, Pagani A, Pavese A (2009) J Mater Sci 44:5815. doi: 10.1007/s10853-009-3817-9 CrossRefGoogle Scholar
  34. 34.
    Herman GT (1980) Image reconstruction from projections. Elsevier, New YorkGoogle Scholar
  35. 35.
    Voltolini M, Marinoni N, Mancini L (2011) J Mater Sci 46:6633. doi: 10.1007/s10853-011-5614-5 CrossRefGoogle Scholar
  36. 36.
    Ketcham RA (2005) Geosph 1:32CrossRefGoogle Scholar
  37. 37.
    Fernandes I (2009) Mater Charact 60:655CrossRefGoogle Scholar
  38. 38.
    Monnin Y, Degrugilliers P, Bulteel D, Garcia-Diaz E (2006) Cem Concr Res 36:1460CrossRefGoogle Scholar
  39. 39.
    Garcia-Diaz E, Bulteel D, Monnin Y, Degrugilliers P, Fasseu P (2010) Cem Concr Res 40:546CrossRefGoogle Scholar
  40. 40.
    Dove PM, Rimstidt JD (1994) In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behaviour, geochemistry and materials applications. Mineralogical Society of America Reviews in Mineralogy, vol 29, pp 259–308Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicoletta Marinoni
    • 1
  • Marco Voltolini
    • 2
    • 3
  • Lucia Mancini
    • 4
  • Fiorenza Cella
    • 5
  1. 1.Dipartimento di Scienze della Terra “Ardito Desio”, Sezione di Mineralogia, Petrografia, Geochimica e Giacimenti MinerariUniversità degli Studi di MilanoMilanItaly
  2. 2.European Synchrotron Radiation Facility (ESRF)GrenobleFrance
  3. 3.Dipartimento di GeoscienzeUniversità di PadovaPadovaItaly
  4. 4.SYRMEP GroupSincrotrone Trieste S.C.p.ABasovizzaItaly
  5. 5.Mapei S.p.A., Central Research LaboratoryMilanItaly

Personalised recommendations