Skip to main content
Log in

Influence of aggregate mineralogy on alkali–silica reaction studied by X-ray powder diffraction and imaging techniques

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reliable assessment of the potential alkali reactivity of aggregate to develop deleterious alkali–silica reaction is essential for construction of durable concrete structures. The potential alkali reactivity of silicified limestone and two limestones has been investigated. Preliminary characterisation of aggregate was performed by optical and environmental scanning electron microscopy. X-ray powder diffraction peak profile analysis was used to predict the aggregates’ potential alkali reactivity. Samples were aged in accordance to the RILEM AAR-2 procedure and further characterised by means of optical and environmental scanning electron microscopy as well as by synchrotron X-ray microtomography, where quantitative analysis relative to damage due to the alkali–silica reaction (ASR) was performed by morphometric analysis of volume data. Results highlight that (1) the microstructural domain size and microstrain values extracted form XRPD line profile analysis seem to be good parameters for predicting the potential alkali reactivity of quartz in aggregate, and (2) the mineralogy of the aggregate influences the weathering products (i.e. aggregate dissolution, ASR gel growth and microcracking) due to ASR in cement-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Swamy RN (1992) The alkali-silica reaction in concrete. Blackie, Glasgow

    Book  Google Scholar 

  2. Stanton T (1940) In: Proceedings of the American Society for Civil Engineering, vol. 66, pp 1781–1811

  3. Diamond S (1992) Strategic highway research program report (SHRP-C/UWP-92-601), p 470

  4. Chatterji S (2005) Cem Concr Res 27:788

    Article  CAS  Google Scholar 

  5. Dent Glasser LS, Kataoka N (1981) In: Proceedings of the 5th international conference on alkali-aggregate reaction in concrete (ICAAR). Cape Town, South Africa, p 7

    Google Scholar 

  6. Jensen V (1993) Alkali aggregate reaction in southern Norway. Doctor Technicae thesis, Technical University of Trondheim, p 262

  7. Benmore C, Monteiro JMP (2010) Cem Concr Res 40:892

    Article  CAS  Google Scholar 

  8. Ichikawa T, Miura M (2007) Cem Concr Res 37:1291

    Article  CAS  Google Scholar 

  9. Bulteel D, Garcia-Diaz E, Vernet C, Zanni H (2002) Cem Concr Res 32:1199

    Article  CAS  Google Scholar 

  10. Bažant Z, Murphy WP, Steffens A (2000) Cem Concr Res 30:419

    Article  Google Scholar 

  11. Kurtis KE, Monteiro PJM, Brown JT, Meyer Ilse (1998) Cem Concr Res 28:411

    Article  CAS  Google Scholar 

  12. Goltermann P (1995) ACI Mater J 92:58

    Google Scholar 

  13. Rivard P, Ballivy G, Gravel C, Saint-Pierre F (2010) Cem Concr Res 40:676

    Article  CAS  Google Scholar 

  14. RILEM AAR-1 (2003) Mater Struct 36:480

    Article  Google Scholar 

  15. Broekmans MATM (2002) The alkali-silica reaction: mineralogical and geochemical aspects of some Dutch concretes and Norwegian mylonites. In: Geologica Ultraiectina, vol 217, PhD-thesis. University of Utrecht, The Netherlands, p 144

  16. Heijnen WMM, Larbi JA, Siemes AJH (1996) In: Proceedings of the 10th international conference on alkali-aggregate reaction in concrete (ICAAR), Melbourne, pp 109–116

  17. Giovambattista A, Batic OR, Traversa L (1986) In: Proceedings of 7th international conference on alkali-aggregate reaction in concrete (ICAAR), Ottawa pp 408–412

  18. Batic OR, Sota JD, Milanesi CA (2000) In: Proceedings of 11th international conference on alkali-aggregate reaction in concrete (ICAAR), Quebéc, pp 1–10

  19. Batic OR, Giaccio G, Zerbino R (2004) In: Proceedings of 12th international conference on alkali-aggregate reaction in concrete (ICAAR), China, pp 436–441

  20. Ponce JM, Sota JD, Batic OR (2003) In: 15 reunión tecnica de la asociación argentina de tecnologia del hormigón, Republica Argentina

  21. Çopuroğlu O, Andiç-Çakir Ö, Broekmans MATM, Kühnel R (2009) Mater Charact 60:757

    Google Scholar 

  22. Ponce JM, Batic OR (2006) Cem Concr Res 36:1148

    Article  CAS  Google Scholar 

  23. Cella F, Marinoni N, Cerulli T, Salvioni D, Pavese A (2011) Advan Cem Res 23:97

    Article  Google Scholar 

  24. RILEM (2000) Mater Struct 33:283–289

    Google Scholar 

  25. Jenkins R, Gould RW, Gedcke D (1995) Quantitative X-ray spectrometry. Marcel Dekker, New York

    Google Scholar 

  26. Madsen IC, Scarlett NVY, Granswick LMD, Lwin T (2001) J Appl Crystallogr 34:409

    Article  CAS  Google Scholar 

  27. McCuster LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1992) J Appl Crystallogr 32:36

    Article  Google Scholar 

  28. Young RA (1993) The rietveld method. University Press, Oxford

    Google Scholar 

  29. Larson AC, Von Dreele RB (1986) General structure analysis system (GSAS). Los Alamos Natl Lab, Los Alamos

    Google Scholar 

  30. Toby BH (2001) J Appl Crystallogr 34:210

    Article  CAS  Google Scholar 

  31. Warren BE, Averbach BL (1952) J Appl Phys 23:497

    Article  CAS  Google Scholar 

  32. Lutterotti M (2010). http://www.ing.unitn.it/~maud/index.html. Retrieved 22 Feb 2008

  33. Marinoni N, Voltolini M, Mancini L, Vignola P, Pagani A, Pavese A (2009) J Mater Sci 44:5815. doi:10.1007/s10853-009-3817-9

    Article  CAS  Google Scholar 

  34. Herman GT (1980) Image reconstruction from projections. Elsevier, New York

    Google Scholar 

  35. Voltolini M, Marinoni N, Mancini L (2011) J Mater Sci 46:6633. doi:10.1007/s10853-011-5614-5

    Article  CAS  Google Scholar 

  36. Ketcham RA (2005) Geosph 1:32

    Article  Google Scholar 

  37. Fernandes I (2009) Mater Charact 60:655

    Article  CAS  Google Scholar 

  38. Monnin Y, Degrugilliers P, Bulteel D, Garcia-Diaz E (2006) Cem Concr Res 36:1460

    Article  CAS  Google Scholar 

  39. Garcia-Diaz E, Bulteel D, Monnin Y, Degrugilliers P, Fasseu P (2010) Cem Concr Res 40:546

    Article  CAS  Google Scholar 

  40. Dove PM, Rimstidt JD (1994) In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behaviour, geochemistry and materials applications. Mineralogical Society of America Reviews in Mineralogy, vol 29, pp 259–308

Download references

Acknowledgement

The authors are grateful to Dr. Davide Salvioni (Mapei S.p.A) for his help during the ESEM observations on the selected samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoletta Marinoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinoni, N., Voltolini, M., Mancini, L. et al. Influence of aggregate mineralogy on alkali–silica reaction studied by X-ray powder diffraction and imaging techniques. J Mater Sci 47, 2845–2855 (2012). https://doi.org/10.1007/s10853-011-6114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6114-3

Keywords

Navigation