Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability

Abstract

The use of low-cost renewable natural fibres as reinforcements for structural composites is attractive but requires specific considerations over that of textile industry requirements. Textile yarns are twisted for processability and increased tensile strength. However, reinforcements employing twisted yarns produce poorer composites due to hindered yarn impregnation, inadequate wettability and compromised orientation efficiency. Whilst assessing the physical properties of select plant fibre yarns that determine reinforcement/composite properties, a strong correlation between yarn twist and compaction is observed. This manuscript also examines a novel plant fibre treatment method using hydroxyethylcellulose (HEC). HEC treatment not only enables intra- and inter-yarn binding thus allowing easy preparation of aligned fabrics, but also improves yarn mechanical properties whilst maintaining physical properties such as low twist. It is noticed that low twist yarns are more responsive to HEC treatment; the tenacity and stiffness of low twist flax is observed to increase by 230 and 75%, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Pickering K (2008) Properties and performance of natural-fibre composites. Woodhead Publishing Ltd, Cambridgeshire

    Google Scholar 

  2. 2.

    Bledzki A, Sperber VE, Faruk O (2002) Natural wood and fibre reinforcement in polymers. Rapra Technology Ltd, Shrewsbury

    Google Scholar 

  3. 3.

    Auto body made of plastics resists denting under hard blows (1941). Popular Mechanics Magazine, vol 76, no 6

  4. 4.

    A fighter fuselage in synthetic material (1945) vol 34. Aero Research Limited, Duxford, Cambridge

  5. 5.

    Latere Dwanisa JP, Mohanty AK, Drzal LT, Misra M (2002) In: Proceedings of 9th Annual Global Plastics Environmental Conference, Michigan, USA, 2002

  6. 6.

    Lewin M (2007) Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  7. 7.

    John M, Anandjiwala RD (2008) Polym Compos 29:187

    Article  CAS  Google Scholar 

  8. 8.

    Vuure A (2008) Natural fibre composites: recent developments. In: Innovation for Sustainable Production (i-SUP), Bruges, Belgium

  9. 9.

    Joshi S, Drzal LT, Mohanty AK (2003) In: International LCA Conference, Seattle, USA

  10. 10.

    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259

    Article  CAS  Google Scholar 

  11. 11.

    Witten E (2008) The composites market in europe: market developments, challenges, and opportunities. Industrievereinigung Verstärkte Kunststoffe

  12. 12.

    Bledzki A, Faruk O, Sperber VE (2006) Macromol Mater Eng 291:449

    Article  CAS  Google Scholar 

  13. 13.

    Malkapuram R, Kumar V, Negi YS (2009) J Reinf Plast Compos 28(10):1169

    Article  CAS  Google Scholar 

  14. 14.

    van den Oever M, Bos HL, van Kemenade MJJM (2000) Appl Compos Mater 7:387

    Article  Google Scholar 

  15. 15.

    Garkhail S, Heijenrath RWH, Peijs T (2000) Appl Compos Mater 7:351

    Article  CAS  Google Scholar 

  16. 16.

    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253

    Article  CAS  Google Scholar 

  17. 17.

    Bledzki A, Gassan J (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  18. 18.

    Mwaikambo L, Ansell MP (2002) J Appl Polym Sci 84:2222

    Article  CAS  Google Scholar 

  19. 19.

    Baley C (2002) Compos Part A Appl Sci Manuf 33:939

    Article  Google Scholar 

  20. 20.

    Espert A, Vilaplana F, Karlsson S (2004) Compos Part A Appl Sci Manuf 35:1267

    Article  Google Scholar 

  21. 21.

    Basu A (2009) Indian J Fibre Textile Res 34:287

    CAS  Google Scholar 

  22. 22.

    Mwaikambo L, Ansell MP (2001) J Mater Sci Lett 20(23):2095

    Article  CAS  Google Scholar 

  23. 23.

    Mukherjee P, Satyanarayana KG (1986) J Mater Sci 21:4162. doi:10.1007/BF01106524

    Article  CAS  Google Scholar 

  24. 24.

    Truong M et al (2009) J Textile Inst 100(6):525

    Article  Google Scholar 

  25. 25.

    Goutianos S, Peijs T (2003) Adv Compos Lett 12(6):237

    Google Scholar 

  26. 26.

    Goutianos S et al (2006) Appl Compos Mater 13(4):199

    Article  CAS  Google Scholar 

  27. 27.

    Zhang L, Miao M (2010) Compos Sci Technol 70:130

    Article  CAS  Google Scholar 

  28. 28.

    Baley C et al (2006) Compos Part A Appl Sci Manuf 37(10):1626

    Article  Google Scholar 

  29. 29.

    Aranberri-Askargorta I, Lampke T, Bismarck A (2003) J Colloid Interf Sci 263:580

    Article  CAS  Google Scholar 

  30. 30.

    Page S et al (2000) J Colloid Interf Sci 222:55

    Article  CAS  Google Scholar 

  31. 31.

    Weyenberg I et al (2006) Compos Part A Appl Sci Manuf 37:1368

    Article  Google Scholar 

  32. 32.

    Ray D et al (2001) Bull Mater Sci 24(2):129

    Article  CAS  Google Scholar 

  33. 33.

    Li Y, Mai Y, Ye L (2000) Compos Sci Technol 60(11):2037

    Article  CAS  Google Scholar 

  34. 34.

    Sreekala M et al (2000) Appl Compos Mater 7:295

    Article  CAS  Google Scholar 

  35. 35.

    Baiardo M, Zini E, Scandola M (2004) Compos Part A Appl Sci Manuf 35:703

    Article  Google Scholar 

  36. 36.

    Rude T, Strait LH, Ruhala LA (2000) J Compos Mater 34(22):1948

    Article  CAS  Google Scholar 

  37. 37.

    Ghosh I (1999) Thesis: Lyocell fiber-reinforced cellulose ester composites - manufacturing considerations and properties, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

  38. 38.

    Madsen B et al (2007) Compos Part A Appl Sci Manuf 38:2194

    Article  Google Scholar 

  39. 39.

    Bonnafous C, Touchard F, Chocinski-Arnault L (2010) Paper presented at the 14th International Conference on Experimental Mechanics, Poitiers, France

  40. 40.

    Bachtiar D, et al. (2010) Paper presented at the 9th National Symposium on Polymeric Materials, Putrajaya, Malaysia

  41. 41.

    Silva F, Chawla N, Filho RDDT (2008) Compos Sci Technol 68:3438

    Article  CAS  Google Scholar 

  42. 42.

    Virk A, Hall W, Summerscales J (2010) Compos Sci Technol 70(6):995

    Article  CAS  Google Scholar 

  43. 43.

    Pratten N (1981) J Mater Sci 16(7):1737

    Article  Google Scholar 

  44. 44.

    Yilmaz D et al (2007) Textile Res J 77(9):661

    Article  CAS  Google Scholar 

  45. 45.

    Gassan J, Bledzki AK (2001) J Appl Polym Sci 82:1417

    Article  CAS  Google Scholar 

  46. 46.

    Carpenter J et al (2007) Adv Mater Res 29–30:263

    Article  Google Scholar 

  47. 47.

    McLaughlin E, Tait RA (1980) J Mater Sci 15:89. doi:10.1007/BF00552431

    Article  Google Scholar 

  48. 48.

    Thygesen A (2006) Thesis: Properties of hemp fibre polymer composites- An optimisation of fibre properties using novel defibration methods and fibre characterisation, The Royal Agricultural and Veterinary University of Denmark (KVL)

Download references

Acknowledgements

This project is supported by the Nottingham Innovative Manufacturing Research Centre (EPSRC, project title ‘Sustainable manufacture of wind turbine blades using natural fibre composites and optimal design tools’). We also thank Janata and Sadat Jute Ltd., Safilin and Biotex Netcomposites for the supply of quality plant fibre yarns.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mike J. Clifford.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shah, D.U., Schubel, P.J., Licence, P. et al. Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability. J Mater Sci 47, 2700–2711 (2012). https://doi.org/10.1007/s10853-011-6096-1

Download citation

Keywords

  • Twist Angle
  • Packing Fraction
  • Flax Fibre
  • Plant Fibre
  • Yarn Strength