Skip to main content
Log in

Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The temperature-dependent fracture toughness of brittle ceramics can be conveniently assessed from bending tests of specimens with defined cracks introduced by indentation. However, the validity of this indentation strength in bending method (ISM) depends critically on the correct consideration of the residual stress induced by the indentation process. The ISM has been applied to La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) and, for comparison, on Ba0.5Sr0.5Co0.2Fe0.8O3-δ (BSCF) perovskite. LSCF with rhombohedral phase exhibits ferro-elastic behavior at ambient temperature, whereas BSCF deforms linear-elastically. Pre-indented specimens of both perovskites were fractured at room temperature in biaxial bending, some of them after an additional annealing step. The fracture toughness values of BSCF match reasonably well when determined with equations which consider the presence or absence of residual indentation stress. Interestingly, annealing has little influence on the apparent toughness results obtained for rhombohedral LSCF, which appears to be related with stress relaxation by ferro-elastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang BX, Malzbender J, Steinbrech RW, Grychtol P, Schneider CM, Singheiser L (2009) Appl Phys Lett 95:051901

    Article  Google Scholar 

  2. Huang AS, Lin YS, Yang WS (2004) J Membr Sci 245:41

    Article  CAS  Google Scholar 

  3. Barsoum MW (2003) Fundamentals of ceramics, 2nd edn. Institute Of Physics Publishing (Gb), London

    Book  Google Scholar 

  4. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  5. Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:539

    Article  CAS  Google Scholar 

  6. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  7. Malzbender J, Toonder JMJD, Balkenende AR, de With G (2002) Mater Sci Eng R 36:47

    Article  Google Scholar 

  8. Marshall DB, Lawn BR (1977) J Am Ceram Soc 60:86

    Article  CAS  Google Scholar 

  9. Quinn GD, Bradt RC (2007) J Am Ceram Soc 90:673

    Article  CAS  Google Scholar 

  10. Fessler H, Fricker DC (1984) J Am Ceram Soc 67:582

    Article  Google Scholar 

  11. Fett T, Rizzi G, Guin JP, Wiederhorn SM (2007) J Mater Sci 42:393. doi:10.1007/s10853-006-1102-8

    Article  CAS  Google Scholar 

  12. Ingelstrom N, Nordberg H (1974) Eng Fract Mech 6:597

    Article  CAS  Google Scholar 

  13. Petrovic JJ, Dirks RA, Jacobson LA, Mendiratta MG (1976) J Am Ceram Soc 59:177

    Article  CAS  Google Scholar 

  14. Marshall DB, Lawn BR (1979) J Mater Sci 14:2001. doi:10.1007/BF00551043

    Article  Google Scholar 

  15. Fett T, Kounga Njiwa AB, Rödel J (2005) Eng Fract Mech 72:647

    Article  Google Scholar 

  16. Kountouros P, Förthmann R, Naoumidis A, Stochniol G, Syskakis E (1995) Ionics 1:40

    Article  CAS  Google Scholar 

  17. Huang BX, Malzbender J, Steinbrech RW, Wessel E, Penkalla HJ, Singheiser L (2010) J. Membr Sci 349:183

    Article  CAS  Google Scholar 

  18. Freiman S, Mecholsky J (2010) J Mater Sci 45:4063. doi:10.1007/s10853-010-4491-7

    Article  CAS  Google Scholar 

  19. Albayrak IC, Basu S, Sakulich A, Yeheskel O, Barsoum MW (2010) J Am Ceram Soc 93:2028

    CAS  Google Scholar 

  20. Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081

    Article  CAS  Google Scholar 

  21. Feng W, Yan D, He J, Zhang G, Chen G, Gu W, Yang S (2005) Appl Surf Sci 243:204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Federal Ministry of Economics and Technology via the MEM-OXYCOAL project (grant no. 0327803) is gratefully acknowledged. The authors would like to thank Dr. Wessel for his valuable support with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Malzbender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B.X., Chanda, A., Steinbrech, R.W. et al. Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ . J Mater Sci 47, 2695–2699 (2012). https://doi.org/10.1007/s10853-011-6095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6095-2

Keywords

Navigation