Skip to main content
Log in

Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the behaviour of carbon nanotube/epoxy and carbon black/epoxy composites under dynamic load is studied via dynamic mechanical thermal analysis (DMTA) in combination with DC electrical resistivity measurements. DMTA measurements are carried out at fixed temperature whilst the dynamic loading frequency is varied. With this procedure, a loading frequency-dependence of the phase shift between DC electrical resistance and mechanical elongation (δ R–ε) is observed, although the force and elongation of the sample are still in phase. Moreover, the magnitude of this phase shift, as well as the amplitude of the DC electrical resistance change shows a clear dependence on the initial electrical conductivity of the samples. In addition, temperature sweeps are carried out to investigate the temperature dependency of the piezoresistance of the samples. An abrupt change in their sensitivity is observed as soon as the glass transition of the polymer is reached. However, the trend of the resistance change beyond the glass transition is substantially different between the nanocomposites containing carbon black and carbon nanotubes, revealing a strong influence of the network characteristics on the piezoresistive behaviour of these novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ruschau GR, Yoshikawa S, Newnham RE (1992) J Appl Phys 72:953

    Article  CAS  Google Scholar 

  2. Celzard A, McRae E, Furdin G, Mareché JF (1997) J Phys 9:2225

    CAS  Google Scholar 

  3. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  4. Clingerman ML, King JA, Schulz KH, Meyers JD (2002) J Appl Polym Sci 83:1341

    Article  CAS  Google Scholar 

  5. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Compos Sci Technol 67:922

    Article  CAS  Google Scholar 

  6. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486

    Article  CAS  Google Scholar 

  7. Carmona F, Canet R, Delhaes P (1986) J Appl Phys 61:2550

    Article  Google Scholar 

  8. Shevchenko VG, Ponomarenko AT, Klason C (1995) Smart Mater Struct 4:31

    Article  CAS  Google Scholar 

  9. Zhang XW, Pan Y, Zheng Q, Yi XS (2001) Polym Int 50:229

    Article  CAS  Google Scholar 

  10. Zhang XW, Pan Y, Zheng Q, Yi XS (2000) J Polym Sci B 38:2739

    Article  CAS  Google Scholar 

  11. Flandin L, Cavaille J, Brechet Y, Dendievel R (1999) J Mater Sci 34:1753. doi:10.1023/A:1004546806226

    Article  CAS  Google Scholar 

  12. Wichmann MHG, Buschhorn ST, Gehrmann J, Schulte K (2009) Phys Rev B 80:245437

    Article  Google Scholar 

  13. Böger L, Sumfleth J, Hedemann H, Schulte K (2010) Compos A 41:1419

    Article  Google Scholar 

  14. Bulgin D (1946) Rubber Chem Technol 19:667

    Article  CAS  Google Scholar 

  15. Voet A, Sircar AK, Mullens TJ (1969) Rubber Chem Technol 42:874

    Article  CAS  Google Scholar 

  16. Kost J, Narkis M, Foux A (1983) Polym Eng Sci 23:567

    Article  CAS  Google Scholar 

  17. Kost J, Narkis M, Foux A (1984) J Appl Polym Sci 29:3937

    Article  CAS  Google Scholar 

  18. Hassan HH, Khairy SA, El-Guiziri SB, Abdel-Moneim HM (1991) J Appl Polym Sci 42:2879

    Article  CAS  Google Scholar 

  19. Pramanik PK, Khastagir D, Saha TN (1993) J Mater Sci 28:3539. doi:10.1007/BF01159835

    Article  CAS  Google Scholar 

  20. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  21. Park JM, Kim D, Lee JR, Kim TW (2003) Mater Sci Eng C 23:971

    Article  Google Scholar 

  22. Fiedler B, Gojny FH, Wichmann MGH, Bauhofer W, Schulte K (2004) Ann Chim Sci Mater 29:81

    Article  CAS  Google Scholar 

  23. Thostenson ET, Chou T (2006) Adv Mater 18:2837

    Article  CAS  Google Scholar 

  24. Wichmann MHG, Buschhorn ST, Boeger L, Adelung R, Schulte K (2008) Nanotechnology 19:475503

    Article  Google Scholar 

  25. Sandler JKW, Kirk JE, Kinloch IA, Shaffer M, Windle AH (2003) Polymer 44:5893

    Article  CAS  Google Scholar 

  26. Kupke M, Schulte K, Schüler R (2001) Compos Sci Technol 61:837

    Article  CAS  Google Scholar 

  27. Lillemose M, Gammelgaard L, Richter J, Thomsen EV, Boisen A (2008) Compos Sci Technol 68:1831

    Article  CAS  Google Scholar 

  28. Simmons JG (1963) J Appl Phys 34:1793

    Article  Google Scholar 

  29. Shimamura Y, Yasuoka T, Todoroki A (2007) In: Proceedings of the 16th International Conference on Composite Materials. ICCM, Kyoto

  30. Anand SV, Mahapatra DR (2009) Smart Mater Struct 18:45013

    Article  Google Scholar 

  31. Zheng Q, Zhou JF, Song YH (2004) J Mater Res 19:2625

    Article  CAS  Google Scholar 

  32. Sumfleth J, Buschhorn S, Schulte K (2011) J Mater Sci 46:659. doi:10.1007/s10853-010-4788-6

    Article  CAS  Google Scholar 

  33. Gojny FH, Wichmann MHG, Koepke U, Fiedler B, Schulte K (2004) Compos Sci Technol 64:2363

    Article  CAS  Google Scholar 

  34. Zhou JF, Song YH, Zheng Q, Wu Q, Zhang MQ (2008) Carbon 46:679

    Article  CAS  Google Scholar 

  35. Kang HJ, Park C, Scholl JA, Brazin AH, Holloway NM, High JW, Lowther SE, Harrison JS (2009) J Polym Sci B 47:994

    Article  CAS  Google Scholar 

  36. Ishai O (1967) J Appl Polym Sci 11:963

    Article  CAS  Google Scholar 

  37. Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Macromolecules 41:6752

    Article  CAS  Google Scholar 

  38. Rajoria H, Jalili N (2005) Compos Sci Technol 65:2079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Beatriz García Castrillón and Samuel T. Buschhorn for their support in their realisation and discussion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra de la Vega.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Vega, A., Sumfleth, J., Wittich, H. et al. Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load. J Mater Sci 47, 2648–2657 (2012). https://doi.org/10.1007/s10853-011-6090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6090-7

Keywords

Navigation