Skip to main content
Log in

Investigating the vibration damping behavior of barium titanate (BaTiO3) ceramics for use as a high damping reinforcement in metal matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have examined factors that affect the vibration damping behavior of the ferroelectric ceramic barium titanate (BaTiO3) by measuring its low frequency (0.1–10 Hz) damping loss coefficient (tan δ) using dynamic mechanical analysis. In monolithic BaTiO3, tan δ was found to increase with temperature up its Curie temperature (T C), beyond which the damping capability exhibited a sharp drop. The abrupt drop as temperatures increase beyond T C has been attributed to the disappearance of ferroelastic domains as the crystallographic structure of BaTiO3 transforms from tetragonal to cubic. At temperatures below T C, the damping coefficient is further shown to increase with decreasing frequency of the imposed vibration, and in microstructures with a high degree of tetragonality and large domain densities. Data further indicate that tan δ values tend to decrease with the number of cycles that are imposed; however, initial values can be restored if the material is allowed to age following loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schaller R (2001) Mater Sci Forum 366–368:621

    Article  Google Scholar 

  2. Millet P, Schaller R, Benoit W (1985) J Phys (Paris) 46:405

    Article  Google Scholar 

  3. Lavernia EJ, Perez RJ, Zhang J (1995) Metall Mater Trans A 26:2803

    Article  Google Scholar 

  4. Schaller R (2003) J Alloy Compd 355:131

    Article  CAS  Google Scholar 

  5. Wolfenden A, Wolla JM (1989) J Mater Sci 24:3205. doi:10.1007/BF01139042

    Article  CAS  Google Scholar 

  6. Christodoulou L, Venables JD (2003) JOM 55(12):39

    Article  Google Scholar 

  7. Poquette BD, Asare TA, Schultz JP, Brown DW, Kampe SL (2011) Metall Mater Trans A 42A:2833

    Article  Google Scholar 

  8. Pojprapai (Imlao) S, Jones JL, Studer AJ, Russell J, Valanoor N, Hoffman M (2008) Acta Mater 56:1577

    Article  Google Scholar 

  9. Hori M, Aoki T, Ohira Y, Yano S (2001) Composites 32:287

    CAS  Google Scholar 

  10. Forrester JS, Kisi EH, Studer AJ (2005) J Eur Ceram Soc 25:447

    Article  CAS  Google Scholar 

  11. Cheng S-Y, Ho N-J, Lu H-Y (2008) J Am Ceram Soc 91:3721

    Article  CAS  Google Scholar 

  12. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 83

    Google Scholar 

  13. Moulson AJ, Herbert JM (2003) Electroceramics materials properties applications, 2nd edn. Wiley, New York

    Google Scholar 

  14. Lee T, Aksay IA (2001) Cryst Growth Des 1(5):401

    Article  CAS  Google Scholar 

  15. Suo Z (1998) Curr Opin Solid State Mater Sci 3(5):486

    Article  CAS  Google Scholar 

  16. Lu SW, Lee BI, Wang ZL, Samuels WD (2000) J Cryst Growth 219:269

    Article  Google Scholar 

  17. Shih WY, Shih WH, Aksay IA (1994) Phys Rev 50(21):15575

    Article  CAS  Google Scholar 

  18. Bradt RC, Ansell GS (1969) J Am Ceram Soc 52(4):192

    Article  CAS  Google Scholar 

  19. Cheng BL, Gabbay M, Fantozzi G (1996) J Mater Sci 31(15):4141. doi:10.1007/BF00352680

    Article  CAS  Google Scholar 

  20. Ma Y, Kisi EH (2001) J Am Ceram Soc 84(2):399

    Article  CAS  Google Scholar 

  21. Otsuka K, Kakeshita T (1993) MRS Bull 27:91

    Article  Google Scholar 

  22. Hathaway KB, Clark AE (1993) MRS Bull 18:34

    CAS  Google Scholar 

  23. Van Humbeeck J (2003) J Alloys Compd 355:58

    Article  Google Scholar 

  24. Teter JP, Hathaway KB, Clark AE (1996) J Appl Phys 79:6213

    Article  CAS  Google Scholar 

  25. Barrado M, Lopez GA, No ML, San Juan J (2009) Mater Sci Eng A 521–522:363

    Google Scholar 

  26. Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33:3763. doi:10.1023/A:1004674630156

    Article  CAS  Google Scholar 

  27. Or SW, Nersessian N, Carman GP (2004) IEEE Trans Magn 40:71

    Article  CAS  Google Scholar 

  28. Zhang W, Kim JM, Koratkar N (2003) Smart Mater Struct 12:642

    Article  CAS  Google Scholar 

  29. Hathaway KB, Clark AE, Teter JP (1995) Metall Mater Trans A 26:2797

    Article  Google Scholar 

  30. Weng W, Wang H, Naiheng M, Yi W, Li J (2010) Mater Des 31:4116

    Article  CAS  Google Scholar 

  31. Aldraihem OJ, Baz A, Al-Saud TS (2007) Mech Adv Mater Struct 14:413

    Article  CAS  Google Scholar 

  32. Goff AC, Aning AO, Kampe SL (2004) TMS Lett 1(3):59

    CAS  Google Scholar 

  33. Kampe SL, Aning AO, Schultz JP, Asare TA, Poquette BD (2004) In: Proceedings of the 11th international conference on composites/nano engineering (ICCE-11), Hilton Head, SC, 8–14 August 2004, ICCE, p 657

  34. Asmatulu R, Claus RO, Mecham JB, Inman DJ (2005) J Intell Mater Syst Struct 16:463

    Article  CAS  Google Scholar 

  35. Guruswamy S, Loveless MR, Srisukhumbowornchai N, McCarter MK, Teter JP (2000) IEEE Trans Magn 36:3219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this study by the Army Research Office under Grant No. DAAD19-01-1-0714, Dr. William Mullins, ARO Contract Manager; and the Material Science and Engineering Department at Virginia Tech. The authors also gratefully acknowledge the comments and clarifications provided by Dr. Yongmei Jin, Assistant Professor of MSE at Michigan Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kampe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asare, T.A., Poquette, B.D., Schultz, J.P. et al. Investigating the vibration damping behavior of barium titanate (BaTiO3) ceramics for use as a high damping reinforcement in metal matrix composites. J Mater Sci 47, 2573–2582 (2012). https://doi.org/10.1007/s10853-011-6080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6080-9

Keywords

Navigation