Skip to main content
Log in

Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports the synthesis, charge transport studies, and microwave shielding properties of polyaniline–Ti-doped γ-Fe2O3 nanocomposite. The composite has been prepared by the in situ chemical oxidative polymerization using dodecylbenzenzesulfonic acid as a dopant. These resulting polymer composites have been found thermally stability up to 260 °C with magnetization value of ~10 emu/g. The temperature dependence of electrical conductivity reveals the applicability of Mott’s 3D-VRH model. The composites has shown the shielding effectiveness of 35.64–45.20 dB (>99.99% attenuation) in 12.4–18 GHz (Ku-Band) frequency range. The enhancement of SE has been due to combination of dielectric and magnetic losses leading to decrease in skin depth increase in total (σT) conductivity and better matching of input impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hong YK, Lee CY, Jeong CK, Lee DE, Kim K, Joo J (2003) Rev Sci Instrum 74:1098

    Article  CAS  Google Scholar 

  2. Kim HK, Kim MS, Song K, Park YH, Kim SH, Joo J, Lee JY (2003) Synth Metals 135:105

    Article  Google Scholar 

  3. Hoang NH, Wojkiewicz JL, Miane JL, Biscarro RS (2007) Polym Adv Technol 18:257

    Article  CAS  Google Scholar 

  4. Wang Y, Jing X (2005) Polym Adv Technol 16:344

    Article  CAS  Google Scholar 

  5. Dhawan SK, Singh N, Venkatachalam S (2002) Synth Metals 129:261

    Article  CAS  Google Scholar 

  6. Das NC, Yamazaki S, Hikosaka M, Chaki TK, Khastgir D, Chakraborty A (2005) Polym Int 54:256

    Article  CAS  Google Scholar 

  7. Singh AP SAK, Chandra A, Dhawan SK (2011) AIP Adv 1:022147

    Article  Google Scholar 

  8. Murugesan R, Subramanian E (2003) Bull Mater Sci 26(5):529

    Article  CAS  Google Scholar 

  9. Schnitzler DC, Meruvia MS, Hümmelgen IA, Zarbin AJG (2003) Chem Mater 15:4658

    Article  CAS  Google Scholar 

  10. Wan M, Fan J (1998) J Polym Sci 36:2749

    CAS  Google Scholar 

  11. Xuan SH, Wang YXJ, Leung KCF, Shu KY (2008) J Phys Chem C 112:18804

    CAS  Google Scholar 

  12. Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Appl Phys Lett 93:053114

    Article  Google Scholar 

  13. Ohlan A, Singh K, Chandra A, Singh VN, Dhawan SK (2009) J Appl Phys 106:044305

    Article  Google Scholar 

  14. Singh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK (2008) Mater Chem Phys 112:651

    Article  CAS  Google Scholar 

  15. Dhawan SK, Singh K, Bakhshi AK (2009) Synth Metals 159(21–22): 2259

    Google Scholar 

  16. Singh K, Ohlan A, Bakhshi AK, Dhawan SK (2010) Mater Chem Phys 119:201

    Article  CAS  Google Scholar 

  17. Cornell RM, Schertmann U (2000) Iron oxides in the laboratory preparation and characterization, 2nd edn. Wiley, New York

    Google Scholar 

  18. Jiang J, Li L, Xu F (2007) J Appl Polym Sci 105:944

    Article  CAS  Google Scholar 

  19. Yakuphanoglu F, Basaran E, Suenkal BF, Sezer E (2006) J Phys Chem B 110:16908

    Article  CAS  Google Scholar 

  20. Mott NF, Davis EA (1979) Electronic processes in noncrystalline materials, 2nd edn. Oxford University Press, New York

    Google Scholar 

  21. Sanjai B, Raghunath A, Natrajan TS, Rangarajan GS, Thomas PVP, Venkatachalam S (1997) Phys Rev B 55:10734

    Article  CAS  Google Scholar 

  22. Singh R, Narula AK, Tandon RP, Mansingh A, Chandra S (1996) J Appl Phys 79:1476

    Article  CAS  Google Scholar 

  23. Lee CY, Song HG, Jang JS, Oh EJ, Epstein AJ, Joo J (1999) Synth Metals 102:1346

    Article  CAS  Google Scholar 

  24. Singh K, Ohlan A, Saini P, Dhawan SK (2008) Polym Adv Technol 19:229

    Article  CAS  Google Scholar 

  25. Li J, Fang K, Qiu H, Li S, Mao W (2004) Synth Metals 142:107

    Article  CAS  Google Scholar 

  26. Pinto NJ, Kahol PK, McCormick BJ, Dalal NS, Han H (1994) Phys Rev B 49:13983

    Article  CAS  Google Scholar 

  27. Reghu M, Cao Y, Moses D, Heeger A (1993) J Phys Rev B 47:1758

    Article  CAS  Google Scholar 

  28. Das NC, Khastgir D, Chaki TK, Chakrraborthy A (2000) Compos A 31:1069

    Article  Google Scholar 

  29. Colaneri NF, Shacklette LW (1992) IEEE Trans Instrum Meas 41:291

    Article  Google Scholar 

  30. Nicolson AM, Ross GF (1970) IEEE Trans Instrum Meas 19:377

    Article  Google Scholar 

  31. Weir WB (1974) Proc IEEE 62:33

    Article  Google Scholar 

  32. Phang SW, Hino T, Abdullah MH, Karamoto N (2007) Mater Chem Phys 104:327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Director NPL for his keen interest in the work. Authors are also thankful to Dr. Rashmi for XRD patterns, Dr. Renu Pasricha for HRTEM images and Dr. R.K. Kotnala for doing the magnetization measurements of the samples. One of the authors Anoop Kumar S is thankful to UGC for providing junior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dhawan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anoop Kumar, S., Singh, A.P., Saini, P. et al. Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3 . J Mater Sci 47, 2461–2471 (2012). https://doi.org/10.1007/s10853-011-6068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6068-5

Keywords

Navigation