Skip to main content
Log in

Probing the recognition of molecularly imprinted polymer beads

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile, robust and cost-effective suspension polymerisation methodology for the generation of ibuprofen molecularly imprinted polymers in bead formats was evaluated. Mineral oil was employed as the continuous phase whereby microdroplets of the pre-polymerisation mixture were formed through vigorous agitation, followed by photo-polymerisation resulting in formation of imprinted beads. For comparison purposes, irregular particles were also prepared from monolith polymers. Physical characteristics of the imprinted polymers were investigated using scanning electron microscope, particle size distribution, nitrogen sorption porosimetry and solvent swelling ratios, with subsequent correlation of these parameters to analyte rebinding performance. Overall, an increase in affinity was observed with decreasing the degree of cross-linking, however, specific rebinding was compromised. An inverse relationship between polymer affinity for the template and surface area was identified, while solvent swelling ratios were directly related to polymer affinity. Correlation between pre-polymerisation studies and polymer binding performance highlighted the significance of employing the polymerisation solvent in template rebinding in order to achieve superior recognition capabilities. Additionally, shape selectivity of binding sites was demonstrated by the decreased binding performance of template structural analogues to the imprinted polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) J Mol Recognit 19(2):106

    Article  CAS  Google Scholar 

  2. Wulff G, Vesper W, Grobe-Einsler R, Sarhan A (1977) Macromol Chem Phys 178(10):2799

    Article  CAS  Google Scholar 

  3. Arshady R, Mosbach K (1981) Macromol Chem Phys 182(2):687

    Article  CAS  Google Scholar 

  4. Kempe H, Kempe M (2004) Macromol Rapid Commun 25(1):315

    Article  CAS  Google Scholar 

  5. Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2005) J Sep Sci 28(16):2080

    Article  CAS  Google Scholar 

  6. Suedee R, Srichana T, Rattananont T (2002) Drug Deliv 9(1):19

    Article  CAS  Google Scholar 

  7. Kempe H, Kempe M (2006) Anal Chem 78(11):3659

    Article  CAS  Google Scholar 

  8. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Macromolecules 35(19):7499

    Article  CAS  Google Scholar 

  9. Mijangos I, Navarro-Villoslada F, Guerreiro A, Piletska E, Chianella I, Karim K, Turner A, Piletsky S (2006) Biosens Bioelectron 22(3):381

    Article  CAS  Google Scholar 

  10. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309

    Article  CAS  Google Scholar 

  11. Abrahams RJ, Fisher J, Loftus P (1988) Introduction to NMR spectroscopy. Wiley, New York

    Google Scholar 

  12. Osmani Q, Hughes H, Flavin K, Hedin-Dahlstrom J, Allender C, Frisby J, McLoughlin P (2008) Anal Bioanal Chem 391(4):1229

    Article  CAS  Google Scholar 

  13. Pérez-Moral N, Mayes AG (2002) Bioseparation 10(6):287

    Article  Google Scholar 

  14. Sing KSW (1985) Pure Appl Chem 57(4):603

    Article  CAS  Google Scholar 

  15. Spivak DA (2005) Adv Drug Deliv Rev 57(12):1779

    Article  CAS  Google Scholar 

  16. Guyot A (1988) Syntheses and separations using functional polymers, 1st edn. Wiley, Chichester

    Google Scholar 

  17. Sherrington D (1998) Chem Commun 21:2275

    Article  Google Scholar 

  18. Svec F, Fréchet JMJ (1995) Macromolecules 28:7580

    Article  CAS  Google Scholar 

  19. Wei ST, Mizaikoff B (2007) Biosens Bioelectron 23(2):201

    Article  CAS  Google Scholar 

  20. Urraca JL, Carbajo MC, Torralvo MJ, González-Vázquez J, Orellana G, Moreno-Bondi MC (2008) Biosens Bioelectron 24(1):155

    Article  CAS  Google Scholar 

  21. Holland N, Duggan P, Owens E, Cummins W, Frisby J, Hughes H, McLoughlin P (2008) Anal Bioanal Chem 391(4):1245

    Article  CAS  Google Scholar 

  22. Kempe M, Mosbach K (1991) Anal Lett 24(7):1137

    Article  CAS  Google Scholar 

  23. Spivak D, Gilmore MA, Shea KJ (1997) J Am Chem Soc 119(19):4388

    Article  CAS  Google Scholar 

  24. http://sparc.chem.uga.edu/sparc/ (2011). Accessed June 2011

  25. http://www.molinspiration.com/cgi-bin/properties (2011). Accessed June 2011

Download references

Acknowledgements

This study is supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) under the Embark Initiative. The authors gratefully acknowledge Dr P. Manesiotis for fruitful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qendresa Osmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osmani, Q., Hughes, H. & McLoughlin, P. Probing the recognition of molecularly imprinted polymer beads. J Mater Sci 47, 2218–2227 (2012). https://doi.org/10.1007/s10853-011-6032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6032-4

Keywords

Navigation