Journal of Materials Science

, Volume 47, Issue 4, pp 2025–2032 | Cite as

Growth of aligned ZnO nanorods on transparent electrodes by hybrid methods

  • M. F. MeléndrezEmail author
  • K. Hanks
  • Francis Leonard-Deepak
  • F. Solis-Pomar
  • E. Martinez-Guerra
  • E. Pérez-Tijerina
  • M. José-YacamanEmail author


The fabrication of ZnO (80 nm) thin film was achieved by hybrid atomic layer deposition (ALD) to prevent the reaction between the reactants and conductive layer of the substrates. ZnO nanorods (ZnO-NRs) growth over the substrates was performed by wet chemical procedure in which Zn(NO3)2 and hexamethylenetetramine were used as the precursors. HR-TEM, SAED, FE-SEM, X-ray diffraction (XRD), and UV–Vis spectroscopy were employed to characterize the ZnO-NRs samples on the substrates. XRD and HR-TEM analyses confirmed that the ZnO nanorod structure is hexagonal wurtzite type with growth in the [0001] direction. Length and thickness of the ZnO-NRs ranged between 45  and 90 nm and 480  and 600 nm, respectively. It was observed that the growth rate of NRs in [0001] direction is 10 times higher than in [1000] direction. The growth mechanism and resulted dimensions of nanorods are function of the synthesis parameters (in hybrid ALD process) such as reaction time, temperature, precursor molar ratio, and thickness of ZnO film.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Atomic Layer Deposition Atomic Layer Deposition Process High Resolution Transmission Electron Microscopy Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project described was supported by the National Center for Research Resources (Award Number 2G12RR013646-11). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health also to PREM grant number which is DMR 0934218 “Oxide and Metal Nanoparticles—The Interface Between Life Sciences and Physical Sciences”. The authors thank to “Servicios Industriales Penoles, SA de C.V” from México, electronic microscopy laboratory of the International Center for Nanotechnology and Advanced Materials at the University of Texas at San Antonio, we also thank Dave Olmos from UTSA for technical support, Paola Jose for her assistance in this study and Department of Material Engineering at the University of Concepcion-Chile.

Supplementary material

10853_2011_6002_MOESM1_ESM.docx (20.2 mb)
Supplementary material 1 (DOCX 20688 kb)


  1. 1.
    O’Reagen B, Gräzel M (1991) Nature 353:373Google Scholar
  2. 2.
    Grätzel M (2003) J Photochem Photobiol C Photochem Rev 4:145CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  4. 4.
    Kaidashev EM, Lorenz M et al (2003) Appl Phys Lett 82:3901CrossRefGoogle Scholar
  5. 5.
    Otsuka A, Funabiki K, Sugiyama N, Yoshida T (2006) Chem Lett 35:666CrossRefGoogle Scholar
  6. 6.
    Baxter JB, Aydil ES (2005) Appl Phys Lett 86:53114CrossRefGoogle Scholar
  7. 7.
    Keis K, Vayssieres L, Lindquist SE, Hagfeldt A (1999) Nanostruct Mater 12:487CrossRefGoogle Scholar
  8. 8.
    Liang S, Sheng H, Liu Y, Hio Z, Lu Y, Shen H (2001) J Cryst Growth 225:110CrossRefGoogle Scholar
  9. 9.
    Golego N, Studenikin SA, Cocivera M (2000) J Electrochem Soc 147:1592CrossRefGoogle Scholar
  10. 10.
    Bai XD, Wang EG, Gao PX, Wang ZL (2003) Nano Lett 3:1147CrossRefGoogle Scholar
  11. 11.
    Campos LC, Tonezzer M, Ferlauto AS, Grillo V et al (2008) Adv Mater 20:1499CrossRefGoogle Scholar
  12. 12.
    Huang MH, Mao S, Feick H, Yan H, Wu Y et al (2001) Science 292:1897CrossRefGoogle Scholar
  13. 13.
    Xing YJ, Xi ZH, Zhang XD, Song JH, Wang RM, Xu J, Xuel ZQ, Yu DP (2005) Appl Phys A 80:1527CrossRefGoogle Scholar
  14. 14.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  15. 15.
    Minne SC, Manalis SR, Quate CF (1995) Appl Phys Lett 67:3918CrossRefGoogle Scholar
  16. 16.
    Peterson RB, Fields CL, Gregg BA (2004) Langmuir 20:5114CrossRefGoogle Scholar
  17. 17.
    Li ZQ, Ding Y, Xiong YJ, Yang Q, Xie Y (2004) Chem Eur J 10:5823CrossRefGoogle Scholar
  18. 18.
    Huczko A (2000) Appl Phys A 70:365CrossRefGoogle Scholar
  19. 19.
    Li Y, Meng GW, Zhang LD, Phillipp F (2000) Appl Phys Lett 76:2011CrossRefGoogle Scholar
  20. 20.
    Takanezawa K, Hirota K, Wei QS, Tajima K, Hashimoto K (2007) J Phys Chem C 11:7218CrossRefGoogle Scholar
  21. 21.
    Alvarez-Quintana J, Martínez E, Pérez-Tijerina E, Pérez-García SA, Rodríguez-Viejo J (2010) J Appl Phys 107:063713CrossRefGoogle Scholar
  22. 22.
    Li Y, Dong X, Cheng C, Zhou X, Zhang P, Gao J, Zhang H (2009) Physica B 404:4282CrossRefGoogle Scholar
  23. 23.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) Nano Lett 5:1531CrossRefGoogle Scholar
  24. 24.
    Sun XM, Chen X, Deng ZX, Li YD (2002) Mater Chem Phys 78:99CrossRefGoogle Scholar
  25. 25.
    Wen-Jun Li et al (1999) J Cryst Growth 203:186CrossRefGoogle Scholar
  26. 26.
    Laudise RA, Kolb ED, Caporaso AJ (1964) J Am Ceram Soc 47:9CrossRefGoogle Scholar
  27. 27.
    Wen B, Huang Y, Boland JJ (2008) J Phys Chem C 112:106CrossRefGoogle Scholar
  28. 28.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) Nano Lett 5:1231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. F. Meléndrez
    • 1
    Email author
  • K. Hanks
    • 2
  • Francis Leonard-Deepak
    • 3
  • F. Solis-Pomar
    • 4
  • E. Martinez-Guerra
    • 5
  • E. Pérez-Tijerina
    • 4
  • M. José-Yacaman
    • 2
    Email author
  1. 1.Department of Materials Engineering (DIMAT), Faculty of EngineeringUniversity of ConcepcionConcepciónChile
  2. 2.Department of Physics & Astronomy, International Center for Nanotechnology and Advanced MaterialsUniversity of Texas at San Antonio, One UTSA CircleSan AntonioUSA
  3. 3.International Iberian Nanotechnology LaboratoryBragaPortugal
  4. 4.Laboratorio de Nanociencia y NanotecnologíaCentro de Innovación y Desarrollo en Ingeniería y Tecnología de la UANL-PIITApodacaMexico
  5. 5.Centro de Investigación en Materiales Avanzados S.C, Unidad Monterrey-PIITApodacaMexico

Personalised recommendations