Journal of Materials Science

, Volume 47, Issue 4, pp 2016–2024 | Cite as

Carbon black–clay hybrid nanocomposites based upon EPDM elastomer



The present study explored the effect of nanoclay on the properties of the ethylene–propylene–diene rubber (EPDM)/carbon black (CB) composites. The nanocomposites were prepared with 40 wt% loading of fillers, where the nanoclay percentage was kept constant at 3 wt%. As the modified nanoclay contains the polar groups and the EPDM matrix is nonpolar, a polar rubber oil extended carboxylated styrene butadiene rubber (XSBR), was used during the preparation of nanocomposites to improve the compatibility. Primarily the nanoclay was dispersed in XSBR by solution mixing followed by ultrasonication. After that EPDM-based, CB–clay hybrid nanocomposites, were prepared in a laboratory scale two roll mill. The dispersion of the different nanoclay in the EPDM matrix was observed by wide-angle X-ray diffraction (WAXD) and high resolution transmission electron microscopy. It was found that the mechanical properties of the hybrid nanocomposites were highly influenced by the dispersion and exfoliation of the nanoclays in the EPDM matrix. Thermo gravimetric analysis, scanning electron microscopy and dynamic mechanical thermal analysis was carried out for each nanocomposite. Among all the nanocomposites studied, the thermal and mechanical properties of Cloisite 30B filled EPDM/CB nanocomposite were found to be highest.


  1. 1.
    Brydson JA (1988) Rubbery materials and their compounds. Springer, New YorkGoogle Scholar
  2. 2.
    Donnet JB, Bansal RC, Wang MJ (1993) Carbon black science and technology, 2nd edn. Marcel Dekker Inc., New York, p 67Google Scholar
  3. 3.
    Koo CM, Kim SO, Chung IJ (2003) Macromolecules 36:2748CrossRefGoogle Scholar
  4. 4.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito OJ (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  5. 5.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon L, Lawrence G, Ginnelix EP (1995) Adv Mater 7:154CrossRefGoogle Scholar
  6. 6.
    Chang YW, Yang Y, Ryu S, Nah C (2002) Polym Int 51(4):319CrossRefGoogle Scholar
  7. 7.
    Li J-X, Wu J, Chan C-M (2000) Polymer 41:6935CrossRefGoogle Scholar
  8. 8.
    Wang S, Hu Y, Wang Z, Yong T, Chen Z, Fan W (2003) Polym Degrad Stab 80:157CrossRefGoogle Scholar
  9. 9.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  10. 10.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  11. 11.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 138:107CrossRefGoogle Scholar
  12. 12.
    Arroyo M, Lopez Manchado MA, Herrero B (2003) Polymer 44(8):2447CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Zhang L, Li Y, Xu H (2005) Polymer 46:129CrossRefGoogle Scholar
  14. 14.
    Yoon JT, Jo WH, Lee MS, Ko MB (2001) Polymer 42:329CrossRefGoogle Scholar
  15. 15.
    Praveen S, Chattopadhyay PK, Jayendran S, Chakraborty BC, Chattopadhyay S (2010) Polym Compos 31(1):97CrossRefGoogle Scholar
  16. 16.
    Qu L, Huang G, Zhang P, Nie Y, Weng G, Wu J (2010) Polym Int 59:1397CrossRefGoogle Scholar
  17. 17.
    Maiti M, Sadhu S, Bhowmick AK (2004) J Polym Sci Part B: Polym Phys 42:4489CrossRefGoogle Scholar
  18. 18.
    Vu YT, Mark JE, Pham LH, Engelhardt M (2001) J Appl Polym Sci 82:1391CrossRefGoogle Scholar
  19. 19.
    Mishra JK, Kim IL, Ha CS (2003) Macromol Rapid Commun 24:671CrossRefGoogle Scholar
  20. 20.
    Li P, Yin L, Song G, Sun J, Wang L, Wang H (2008) Appl Clay Sci 40:38CrossRefGoogle Scholar
  21. 21.
    Schon P, Dutta S, Shirazi M, Noordermeer J, Vancso GJ (2011) J Mater Sci 46:3507. doi:10.1007/s10853-011-5259-4 CrossRefGoogle Scholar
  22. 22.
    Yamabe J, Nishimura S (2011) J Mater Sci 46:2300. doi:10.1007/s10853-010-5073-4 CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Huang HX, Chen YK, Wu XJ (2010) J Mater Sci 45:4054. doi:10.1007/s10853-010-4488-2 CrossRefGoogle Scholar
  24. 24.
    Li H, Sun J, Song Y, Zheng Q (2009) J Mater Sci 44:1881. doi:10.1007/s10853-008-3223-8 CrossRefGoogle Scholar
  25. 25.
    Karger-Kocsis J, Zhang Z (2005) In: Mechanical properties of polymers based on nanostructure and morphology. Marcel Dekker Inc, New York, pp 553–602Google Scholar
  26. 26.
    Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mulhaupt R (2000) Macromol Mater Eng 275:8CrossRefGoogle Scholar
  27. 27.
    Zilg C, Thomann R, Mülhaupt R, Finter J (1999) Adv Mater 11:49CrossRefGoogle Scholar
  28. 28.
    Ganter M, Gronski W, Reichart P, Mulhaupt R (2001) Rubber Chem Technol 74:221CrossRefGoogle Scholar
  29. 29.
    Teh PL, Mohd Ishak ZA, Hashim AS, Karger-kocsis J, Ishiaku US (2004) Eur Polym J 40:2513CrossRefGoogle Scholar
  30. 30.
    Zhang LQ, Wang YZ, Wang YQ, Sui Y, Yu DS (2000) J Appl Polym Sci 78:1873CrossRefGoogle Scholar
  31. 31.
    Guriya KC, Tripathy DK (1995) Rubber Compos Process Appl 23:193Google Scholar
  32. 32.
    Tan H, Isayev AI (2008) J Appl Polym Sci 109:767CrossRefGoogle Scholar
  33. 33.
    Vaia RA, Ginnelis EP (1997) Macromolecules 30:8000CrossRefGoogle Scholar
  34. 34.
    Das A, Costa FR, Wagenknecht U, Heinrich G (2008) Eur Polym J 44:3456CrossRefGoogle Scholar
  35. 35.
    Xie W, Hwu JM, Jiang GJ, Buthelezi TM, Pan WP (2003) Polym Eng Sci 43:214CrossRefGoogle Scholar
  36. 36.
    Zou H, Xu W, Zhang Q, Fu Q (2006) J Appl Polym Sci 99:1724CrossRefGoogle Scholar
  37. 37.
    Manias E, Kuppa V, Yang DK, Zax DB (2001) Colloids Surf A 187–188:509CrossRefGoogle Scholar
  38. 38.
    Sun Y, Zhang Z, Moon K-S, Wong CP (2004) J Polym Sci Part B: Polym Phys 42:3849CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials Science CentreIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations