Skip to main content
Log in

Structural and dielectric properties of Na1−x Ba x Nb1−x (Sn0.5Ti0.5) x O3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free (1 − x)NaNbO3/xBa(Ti0.5Sn0.5)O3 (x = 0.1, 0.125, 0.15, 0.175, 0.2, and 0.3) ceramics were elaborated by the conventional ceramic technique. Sintering has been made at 1523 K for 2 h. The crystal structure was investigated by X-ray diffraction with CuKα radiation at room temperature. As a function of composition, these compounds crystallize with tetragonal or cubic symmetry. Dielectric measurements show that the materials have a classical ferroelectric behavior for compositions in the range 0.10 ≤ x ≤ 0.15 and relaxor one for compositions in the range 0.15 < x ≤ 0.30. Temperatures T C or T m decrease as x content increases. The ferroelectric behavior has been confirmed by hysteresis characterization. For x = 0.1, a piezoelectric coefficient d 31 of 42.146 pC N−1 was obtained at room temperature. The evolution of the Raman spectra was studied as a function of temperature for x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cross LE (1994) Ferroelectrics 151:305

    Article  CAS  Google Scholar 

  2. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) J Appl Phys 68:1916

    Article  Google Scholar 

  3. Ravez J, Simon A (2000) Solid State Sci 2:525

    Article  CAS  Google Scholar 

  4. Abdelkafi Z, Abdelmoula N, Khemakhem H, Simon A, Maglione M (2008) Ferroelectrics 371:48

    Article  CAS  Google Scholar 

  5. Ricinschi D, Elena Ciomaga C, Mitoseriu L, Buscaglia V, Okuyama M (2010) J Eur Ceram Soc 30:237

    Article  CAS  Google Scholar 

  6. Aoujgal A, Ahamdaneb H, Graça MPF, Costa LC, Tachafine A, Carru JC, Outzourhit A (2010) Solid State Commun 150:1245

    Article  CAS  Google Scholar 

  7. Magaw HD (1974) Ferroelectrics 7:87

    Article  Google Scholar 

  8. Juang YD, Dai SB, Wang YC, Hwang JS, Hu ML, Tse WS (2000) J Appl Phys 88:742

    Article  CAS  Google Scholar 

  9. Singh Kuldeep, Lingwal Vijendra, Bhatt SC, Panwar NS, Semwal BS (2001) Mater Res Bull 36:2365

    Article  CAS  Google Scholar 

  10. Maeda T, Takiguchi N, Ishikawa M, Hemsel T, Morita T (2010) Mater Lett 64:128

    Article  Google Scholar 

  11. Von Der Mühll R, Sadel A, Hagenmuller P (1984) J Solid State Chem 51:176

    Article  Google Scholar 

  12. Aoyagi R, Rinaldi R, Sumiyama N, Iwata M, Maeda M (2010) Key Eng Mater 421:42

    Article  Google Scholar 

  13. Aydi A, Boudaya C, Khemakhem H, Von Der Mühll R, Simon A (2004) Solid State Sci 6:333

    Article  CAS  Google Scholar 

  14. Aydi A, Khemakhem H, Simon A, Michau D, Von Der Mühll R (2009) J Alloys Compd 484:356

    Article  CAS  Google Scholar 

  15. Yasuda N, Ohwa H, Asano S (1996) Jpn J Appl Phys 35:5099

    Article  CAS  Google Scholar 

  16. Campbell CK, van Wyck JD, Holm MFK, Prinsloo JJ, Schoeman JJ (1993) IEEE Trans Compon Hybrid Manuf Technol 16:418

    Article  CAS  Google Scholar 

  17. Wei X, Feng Y, Huang L, Xia S, Jin L, Yao X (2005) Mater Sci Eng B 120:64

    Article  Google Scholar 

  18. Markovic S, Mitric M, Cvjeticanin N, Uskokovic D (2007) J Eur Ceram Soc 27:505

    Article  CAS  Google Scholar 

  19. Wei XY, Feng YJ, Yao X (2003) Appl Phys Lett 10:83

    Google Scholar 

  20. Du F, Cui B, Cheng H, Niu R, Chang Z (2009) Mater Res Bull 44:1930

    Article  CAS  Google Scholar 

  21. Mueller V, Beige H, Abich H-P (2004) Appl Phys Lett 84:1341

    Article  CAS  Google Scholar 

  22. Boudaya C, Khemakhem H, Simon A, Von Der Mühll R (2004) Solid State Sci 6:625

    Article  CAS  Google Scholar 

  23. Rodriguez-Carvajal J (2005) Program Fullprof, Laboratoire Léon Brillouin (CEA-CNRS), version 3.70, May 2004, LLB-LCSIM

  24. Shannon RD, Prewitt CT (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  25. Yao X, Chen ZI, Cross IE (1983) J Appl Phys 54:3399

    Article  CAS  Google Scholar 

  26. Smolensky GA, Isupov VA (1954) Dokl Akad Nauk SSSR 97:653

    Google Scholar 

  27. Cross LE (1987) Ferroelectrics 76:241

    Article  CAS  Google Scholar 

  28. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84

    Article  CAS  Google Scholar 

  29. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  30. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) J Appl Phys 68:2916

    Article  CAS  Google Scholar 

  31. Simon A, Ravez J, Maglione M (2004) J Phys Condens Matter 16:963

    Article  CAS  Google Scholar 

  32. Standards on piezoelectricity, ANSI/IEEE std (1987), p 176

  33. Von Der Mühll R, Khemakhem H, Ravez J (1997) Ann Chim Sci Mater 22:731

    Google Scholar 

  34. Chaker C, El Gharbi W, Abdelmoula N, Khemakhem H, Simon A, Maglione M (2009) J Alloys Compd 481:305

    Article  CAS  Google Scholar 

  35. Ross SD (1970) J Phys C 3:1785

    Article  CAS  Google Scholar 

  36. Juang YD, Hu ML, Tse WS (1994) J Appl Phys 76:3746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abdelmoula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khelifi, H., Aydi, A., Abdelmoula, N. et al. Structural and dielectric properties of Na1−x Ba x Nb1−x (Sn0.5Ti0.5) x O3 ceramics. J Mater Sci 47, 1943–1949 (2012). https://doi.org/10.1007/s10853-011-5987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5987-5

Keywords

Navigation