Skip to main content
Log in

Synthesis of linear ZnO structures by a thermal decomposition method and their characterisation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The semiconductor zinc oxide (ZnO) is a promising material for applications in optoelectronics, photochemistry and chemical sensing. Furthermore, ZnO structures can be grown with a large variety of sizes and shapes. Devices with ZnO rods or wires as their core elements can be used in solar cells, gas sensors or biosensors. In this article, an easy approach for the non-aqueous wet chemical synthesis of ZnO structures is presented that employs the solvent trioctylamine (TOA) and the surfactant hexamethylenetetramine (HMTA). Using the thermal decomposition method, rod-shaped structures were grown that are suitable for the fabrication of electrical devices. A detailed study was carried out to investigate the effects of various reaction parameters on the growth process. Both the concentration of the surfactant HMTA and the zinc precursor zincacetylacetonate (Zn(acac)2) were found to show strong effects on the resulting morphology. In addition to structural characterisation using XRD, SEM and TEM, also optical properties of rod-shaped ZnO structures were measured. Rod-shaped structures were obtained for the following conditions: reaction time 4 h, reaction temperature 70 °C, 1 mmol of Zn(acac)2, 4 mmol of HMTA and 25 mL of the solvent TOA. Photoluminescence and photoluminescence excitation spectroscopy of samples grown under these conditions provided information on levels of defect states that could be critical for chemical sensing applications. Two narrow peaks around 254 and 264 nm were found that are well above the band gap of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang ZL (2004) J Phys Condens Matter 16:R829

    Article  CAS  Google Scholar 

  2. Lu JG, Chang P, Fan Z (2006) Mater Sci Eng R 52:49

    Article  Google Scholar 

  3. Shen G, Chen P-C, Ryu K, Zhou C (2009) J Mater Chem 19:828

    Article  CAS  Google Scholar 

  4. Huang MH, Mao S, Feick HN, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  CAS  Google Scholar 

  5. Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Appl Phys Lett 78:407

    Article  CAS  Google Scholar 

  6. Look DC (2001) Mater Sci Eng B 80:383

    Article  Google Scholar 

  7. Marci G, Augugliaro V, Lopez-Munoz M, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM (2001) J Phys Chem B 105:1026

    Article  CAS  Google Scholar 

  8. Jiao CM, Chen X (2009) J Therm Anal Calorim 98:813

    Article  CAS  Google Scholar 

  9. Zhang WD, Zhang WH, Ma XY (2009) J Mater Sci 44:4677. doi:10.1007/s10853-009-3716-0

    Article  CAS  Google Scholar 

  10. Patil SB, Singh AK (2010) J Mater Sci 45:5204. doi:10.1007/s10853-010-4559-4

    Article  CAS  Google Scholar 

  11. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Crit Rev Solid State Mater Sci 29:111

    Article  CAS  Google Scholar 

  12. Shalish I, Temkin H, Narayanamurti V (2004) Phys Rev B 69:245401/1

    Article  CAS  Google Scholar 

  13. Kong XH, Li YD (2003) Chem Lett 32:1062

    Article  CAS  Google Scholar 

  14. Liu B, Zeng HC (2003) J Am Chem Soc 125:4430

    Article  CAS  Google Scholar 

  15. Wang Z, Qian XF, Yin J, Zhu ZK (2004) Langmuir 20:3441

    Article  CAS  Google Scholar 

  16. Ye CH, Bando Y, Fang XS, Shen G, Golberg D (2007) J Phys Chem C 111:12673

    Article  CAS  Google Scholar 

  17. Yang JH, Qiu YF, Yang SH (2007) Cryst Growth Des 7:2562

    Article  CAS  Google Scholar 

  18. Wang M, Kim EJ, Hahn SH, Park C, Koo KK (2008) Cryst Growth Des 8:501

    Article  CAS  Google Scholar 

  19. Kong XY, Ding Y, Yang R, Wang ZL (2004) Science 303:1348

    Article  CAS  Google Scholar 

  20. Hughes WL, Wang ZL (2004) J Am Chem Soc 126:6703

    Article  CAS  Google Scholar 

  21. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  Google Scholar 

  22. Yan HQ, He RR, Johnson J, Law M, Saykally RJ, Yang PD (2003) J Am Chem Soc 125:4728

    Article  CAS  Google Scholar 

  23. Kar S, Pal BN, Chaudhuri S, Chakravorty D (2006) J Phys Chem B 110:4605

    Article  CAS  Google Scholar 

  24. Shu Y, Tsugio S (2005) J Mater Chem 15:4584

    Article  Google Scholar 

  25. Mo MS, Wang DB, Du XS, Ma J, Qian XF, Chen DP, Qian YT (2009) Cryst Growth Des 9:797

    Article  CAS  Google Scholar 

  26. Wang ZL, Kong XY, Zuo JM (2003) Phys Rev Lett 91:185502

    Article  CAS  Google Scholar 

  27. Zhang J, Sun L, Liao C, Yan C (2002) Chem Commun 2002:262

    Article  Google Scholar 

  28. Zhang JH, Liu HY, Wang ZL, Ming NB, Li ZR, Biris AS (2007) Adv Funct Mater 17:3897

    Article  CAS  Google Scholar 

  29. Li J, Guicun L, Qianmao J, Hongrui P (2007) Mater Lett 61:1964

    Article  Google Scholar 

  30. Ghoshal T, Kar S, Chaudhuri S (2007) Cryst Growth Des 7:136

    Article  CAS  Google Scholar 

  31. Lao JY, Huang JY, Wang DZ, Ren ZF (2004) J Mater Chem 14:770

    Article  CAS  Google Scholar 

  32. Song RQ, Xu AW, Deng B, Li Q, Chen GY (2007) Adv Funct Mater 17:296

    Article  CAS  Google Scholar 

  33. Tian ZRR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ (2002) J Am Chem Soc 124:12954

    Article  CAS  Google Scholar 

  34. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113

    Article  CAS  Google Scholar 

  35. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) J Phys Chem B 105:3350

    Article  CAS  Google Scholar 

  36. Devarepally KK, Babita B, Manorama SV (2006) Sens Actuators B 119:676

    Article  Google Scholar 

  37. Lupan O, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN (2010) Sens Actuators B 144:56

    Article  Google Scholar 

  38. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Chem Phys Lett 363:123

    Article  CAS  Google Scholar 

  39. Greene LE, Yuhas BD, Law M, Zitoun D, Yang P (2006) Inorg Chem 45:7535

    Article  CAS  Google Scholar 

  40. Wahab R, Kim YS, Lee K, Shin HS (2010) J Mater Sci 45:2967. doi:10.1007/s10853-010-4294-x

    Article  CAS  Google Scholar 

  41. Munoz-Hernandez G, Escobedo-Morales A, Pal U (2009) Cryst Growth Des 9:297

    Article  CAS  Google Scholar 

  42. Andelman T, Gong Y, Polking M, Yin M, Kuskovsky I, Neumark G, O’Brien S (2005) J Phys Chem B 109:14314

    Article  CAS  Google Scholar 

  43. Famengo A, Anantharaman S, Ischia G, Causin V, Natile MM, Maccato C, Tondello E, Bertagnolli H, Gross S (2009) Eur J Inorg Chem 2009:5017

    Article  Google Scholar 

  44. Wu J-J, Liu S-C, Wu C-T, Chen K-H, Chen L-C (2002) Appl Phys Lett 81:1312

    Article  CAS  Google Scholar 

  45. Maldonado A, Olvera MDL, Asomoza R, Tirado-Guerra S (2001) J Mater Sci Mater Electron 12:623

    Article  CAS  Google Scholar 

  46. Fauteux C, Longtin R, Pegna J, Therriault D (2007) Inorg Chem 46:11036

    Article  CAS  Google Scholar 

  47. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  48. Barros BS, Barbosa R, dos Santos NR, Barros TS, Souza MA (2006) Inorg Mater 42:1348

    Article  CAS  Google Scholar 

  49. Wu XL, Siu GG, Fu CL, Ong HC (2001) Appl Phys Lett 78:2285

    Article  CAS  Google Scholar 

  50. De la Rosa E, Sepúlveda-Guzman S, Reeja-Jayan B, Torres A, Salas P, Elizondo E, Yacaman JM (2007) J Phys Chem C 111:8489

    Article  Google Scholar 

  51. Djurisic AB, Leung YH, Tam KH, Ding L, Ge WK, Chen HY, Gwo S (2006) Appl Phys Lett 88:103107

    Article  Google Scholar 

  52. Xiong G, Pal U, Serrano JG (2007) J Appl Phys 101:024317

    Article  Google Scholar 

  53. Escobedo-Morales A, Pal U (2008) Appl Phys Lett 93:193120

    Article  Google Scholar 

  54. Li Y, Li WF, Xu G, Ma XL, Cheng HM (2008) J Mater Sci 43:1711. doi:10.1007/s10853-007-2344-9

    Article  CAS  Google Scholar 

  55. Djurisic AB, Choy WCH, Roy VAL, Leung YH, Kwong CY, Cheah KW, Rao TKG, Chan WK, Lui HF, Surya C (2004) Adv Funct Mater 14:856

    Article  CAS  Google Scholar 

  56. Irimpan L, Nampoori VPN, Radhakrishnan P, Deepthy A, Krishnan B (2007) J Appl Phys 102:063524

    Article  Google Scholar 

  57. Hung C-H, Whang W-T (2003) Mater Chem Phys 82:705

    Article  CAS  Google Scholar 

  58. Pal U, Santiago P (2005) J Phys Chem B 109:15317

    Article  CAS  Google Scholar 

  59. Meng XQ, Shen DZ, Zhang JY, Zhao DX, Lu YM, Dong L, Zhang ZZ, Liu YC, Fan XW (2005) Solid State Commun 135:179

    Article  CAS  Google Scholar 

  60. Heo YW, Norton DP, Pearton SJ (2005) J Appl Phys 98:073502

    Article  Google Scholar 

Download references

Acknowledgement

This study is funded by the National Measurement System of the UK Department for Business, Innovation and Skills through the Strategic Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Munz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devarepally, K.K., Cox, D.C., Fry, A.T. et al. Synthesis of linear ZnO structures by a thermal decomposition method and their characterisation. J Mater Sci 47, 1893–1901 (2012). https://doi.org/10.1007/s10853-011-5978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5978-6

Keywords

Navigation