Journal of Materials Science

, Volume 47, Issue 4, pp 1867–1874 | Cite as

In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites

Article

Abstract

The full exfoliation graphene oxide (GO) nanosheets were synthesized by an improved Hummers’ method. The phenylethynyl terminated thermosetting polyimide (PI) and PI/GO nanocomposites were prepared via a polymerization of monomer reactants process. Thermogravimetric analysis indicated that the incorporation of GO increased the thermal stability of the PI at low filling content. The friction and wear testing results of the PI and PI/GO nanocomposites under dry sliding condition against GCr15 steel showed that the addition of GO evidently improved the friction and wear properties of PI, which were considered to be the result of the formation of uniform transfer film and the increasing of load-carrying capacity. The friction and wear properties of the PI and PI/GO nanocomposites were investigated on a model ring-on-block test rig under dry sliding conditions against the GCr15 steel. Experimental results showed that the addition of GO evidently improved the friction and wear properties of PI, which were considered to be the result of the formation of uniform transfer film and the increasing of load-carrying capacity. The optimum GO content of nanocomposite for tribological properties is 3 wt%, which could be a potential candidate for tribo-material under dry sliding condition against GCr15 steel.

References

  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849 CrossRefGoogle Scholar
  2. 2.
    Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457. doi:10.1039/b815239j CrossRefGoogle Scholar
  3. 3.
    Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127. doi:10.1016/j.carbon.2010.01.058 CrossRefGoogle Scholar
  4. 4.
    He HK, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054. doi:10.1021/cm101634k CrossRefGoogle Scholar
  5. 5.
    Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301. doi:10.1039/c0jm02708a CrossRefGoogle Scholar
  6. 6.
    Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547. doi:10.1021/nn900694t CrossRefGoogle Scholar
  7. 7.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327. doi:10.1038/nnano.2008.96 CrossRefGoogle Scholar
  8. 8.
    Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50(14):3173. doi:10.1002/anie.201007520 CrossRefGoogle Scholar
  9. 9.
    Mittal KL (1998) Polyimides: synthesis, characterization and application. Plenum, New YorkGoogle Scholar
  10. 10.
    Ghost MK, Mittal LK (1996) Polyimide fundamental and applications. Marcel Dekker, New YorkGoogle Scholar
  11. 11.
    Hergenrother PM, Smith JG Jr (1994) Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides. Polymer 35:4857. doi:10.1016/0032-3861(94)90744-7 CrossRefGoogle Scholar
  12. 12.
    Hergenrother PM (2000) Development of composites, adhesives and sealants for high-speed commercial airplanes. SAMPE J 36(1):30Google Scholar
  13. 13.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806. doi:10.1021/nn1006368 CrossRefGoogle Scholar
  14. 14.
    Serafini TT, Delvigs P, Lightsey GR (1972) Thermally stable polyimides from solutions of monomeric reactants. J Appl Polym Sci 16:905. doi:10.1002/app.1972.070160409 CrossRefGoogle Scholar
  15. 15.
    Wang JZ, Yan FY, Xue QJ (2009) Friction and wear behavior of ultra-high molecular weight polyethylene sliding against GCr15 steel and electroless Ni-P alloy coating under the lubrication of seawater. Tribol Lett 35:85. doi:10.1007/s11249-009-9435-5 CrossRefGoogle Scholar
  16. 16.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653. doi:10.1021/nn900227d CrossRefGoogle Scholar
  17. 17.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297. doi:10.1002/adfm.200801776 CrossRefGoogle Scholar
  18. 18.
    Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 2:205. doi:10.1002/smll.200900765 CrossRefGoogle Scholar
  19. 19.
    Xiong M, You B, Zhou S, Wu L (2004) Study on acrylic resin/titania organic inorganic hybrid materials prepared by the sol–gel process. Polymer 45:2967. doi:10.1016/j.polymer.2004.02.043 CrossRefGoogle Scholar
  20. 20.
    Yu YY, Chen CY, Chen WC (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44:593. doi:10.1016/S0032-3861(02)00824-8 CrossRefGoogle Scholar
  21. 21.
    Li YQ, Wang QH, Wang TM, Pan GQ (2011) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci. doi:10.1007/s10853-011-5846-4
  22. 22.
    Satyanarayana N, Skandesh Rajan KS, Sinha SK, Shen L (2007) Carbon nanotube reinforced polyimide thin-film for high wear durability. Tribol Lett 27:181. doi:10.1007/s11249-007-9219-8 CrossRefGoogle Scholar
  23. 23.
    Cai H, Yan FY, Xue QJ, Liu WM (2003) Investigation of tribological properties of Al2O3–polyimide nanocomposites. Polym Test 22:875. doi:10.1016/S0142-9418(03)00024-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations