Advertisement

Journal of Materials Science

, Volume 47, Issue 6, pp 2519–2534 | Cite as

Advanced titania nanostructures and composites for lithium ion battery

  • Xin Su
  • QingLiu Wu
  • Xin Zhan
  • Ji Wu
  • Suying Wei
  • Zhanhu GuoEmail author
Review

Abstract

Owing to the increasing demand of energy and shifting to the renewable energy resources, lithium ion batteries (LIBs) have been considered as the most promising alternative and green technology for energy storage applied in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and other electric utilities. Owing to its environmental benignity, availability, and stable structure, titanium dioxide (TiO2) is one of the most attractive anode materials of LIBs with high capability, long cycling life, high safety, and low cost. However, the poor electrical conductivity and low diffusion coefficient of Li-ions in TiO2 hamper the advancement of TiO2 as anode materials of LIBs. Therefore, intensive research study has been focused on designing the nanostructures of TiO2 and its composites to reduce the diffusion length of Li-ion insertion/extraction and improve the electrical conductivity of the electrode materials. In this article, the development of TiO2 and its composites in nano-scales including fabrication, characterization of TiO2 nanomaterials, TiO2/carbon composite, and TiO2/metal oxide composites to improve their properties (capacity, cycling performance, and energy density) for LIBs are reviewed. Meanwhile, the mechanisms for influences of the structure, surface morphology, and additives to TiO2 composites on the related properties of TiO2 and TiO2 composites to LIBs are discussed. The new directions of research on this field are proposed.

Keywords

TiO2 SnO2 Rutile Specific Capacity TiO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Park C-M et al (2010) Chem Soc Rev 39(8):3115CrossRefGoogle Scholar
  2. 2.
    Amine K et al (2010) Adv Mater (Weinheim, Ger) 22(28):3052CrossRefGoogle Scholar
  3. 3.
    Zhou H et al (2010) ChemSusChem 3(9):1009CrossRefGoogle Scholar
  4. 4.
    Nelson P, Amine K (2010) Lithium Batter 203. http://www.transportation.anl.gov/pdfs/HV/461.pdf
  5. 5.
    Daniel C (2008) JOM 60(9):43CrossRefGoogle Scholar
  6. 6.
    Terada N (2010) J Jpn Inst Energy 89(5):433Google Scholar
  7. 7.
    Nishi Y (2001) J Power Sources 100(1–2):101CrossRefGoogle Scholar
  8. 8.
    Li J-L, Daniel C, Wood D (2011) J Power Sources 196(5):2452CrossRefGoogle Scholar
  9. 9.
    Huang SY et al (1995) J Electrochem Soc 142(9):L142CrossRefGoogle Scholar
  10. 10.
    Yang Z et al (2011) Chem Rev 111(5):3577CrossRefGoogle Scholar
  11. 11.
    Rajeshwar K et al (2001) Pure Appl Chem 73(12):1849CrossRefGoogle Scholar
  12. 12.
    Primo A, Corma A, Garcia H (2011) Phys Chem Chem Phys 13(3):886CrossRefGoogle Scholar
  13. 13.
    Yang Z et al (2009) J Power Sources 192(2):588CrossRefGoogle Scholar
  14. 14.
    Wagemaker M et al (2003) J Am Chem Soc 125(3):840CrossRefGoogle Scholar
  15. 15.
    Xu T et al (2010) JOM 62(9):24CrossRefGoogle Scholar
  16. 16.
    Earle MD (1942) Phys Rev 61:56CrossRefGoogle Scholar
  17. 17.
    Yoon S et al (2009) Electrochem Solid State Lett 12(2):A28CrossRefGoogle Scholar
  18. 18.
    Abayev I et al (2003) Phys Status Solidi A 196(1):R4CrossRefGoogle Scholar
  19. 19.
    Kavan L et al (1996) J Am Chem Soc 118(28):6716CrossRefGoogle Scholar
  20. 20.
    Dachille F, Simons PY, Roy R (1968) Am Mineral 53(11–12):1929Google Scholar
  21. 21.
    Post JE, Burnham CW (1986) Am Mineral 71(1–2):142Google Scholar
  22. 22.
    Kavan L, Fattakhova D, Krtil P (1999) J Electrochem Soc 146(4):1375CrossRefGoogle Scholar
  23. 23.
    Ohzuku T, Takehara Z, Yoshizawa S (1979) Electrochim Acta 24(2):219CrossRefGoogle Scholar
  24. 24.
    Zachau-Christiansen B et al (1988) Solid State Ion 28–30(Pt 2):1176CrossRefGoogle Scholar
  25. 25.
    Hu Y-S et al (2006) Adv Mater 18(11):1421CrossRefGoogle Scholar
  26. 26.
    Barnard AS, Zapol P (2004) J Phys Chem B 108(48):18435CrossRefGoogle Scholar
  27. 27.
    Ranade MR et al (2002) Proc Natl Acad Sci USA 99(9, Suppl 2):6476CrossRefGoogle Scholar
  28. 28.
    van de Krol R, Goossens A, Schoonman J (1999) J Phys Chem B 103(34):7151CrossRefGoogle Scholar
  29. 29.
    Olson CL, Nelson J, Islam MS (2006) J Phys Chem B 110(20):9995CrossRefGoogle Scholar
  30. 30.
    Stashans A et al (1996) Phys Rev B Condens Matter 53(1):159CrossRefGoogle Scholar
  31. 31.
    Mackrodt WC (1999) J Solid State Chem 142(2):428CrossRefGoogle Scholar
  32. 32.
    Koudriachova MV, Harrison NM, de Leeuw SW (2002) Phys Rev B Condens Matter Mater Phys 65(23):235423/1CrossRefGoogle Scholar
  33. 33.
    Muscat J, Swamy V, Harrison NM (2002) Phys Rev B Condens Matter Mater Phys 65(22):224112/1CrossRefGoogle Scholar
  34. 34.
    Koudriachova MV, De Leeuw SW, Harrison NM (2004) Phys Rev B Condens Matter Mater Phys 70(16):165421/1CrossRefGoogle Scholar
  35. 35.
    Koudriachova MV, de Leeuw SW, Harrison NM (2004) Phys Rev B Condens Matter Mater Phys 69(5):054106/1CrossRefGoogle Scholar
  36. 36.
    Soedergren S et al (1997) J Phys Chem B 101(16):3087CrossRefGoogle Scholar
  37. 37.
    Henningsson A et al (2003) J Chem Phys 118(12):5607CrossRefGoogle Scholar
  38. 38.
    Koudriachova MV, Harrison NM, de Leeuw SW (2003) Solid State Ion 157(1–4):35CrossRefGoogle Scholar
  39. 39.
    Payne MC et al (1992) Rev Mod Phys 64(4):1045CrossRefGoogle Scholar
  40. 40.
    Cava RJ et al (1984) J Solid State Chem 53(1):64CrossRefGoogle Scholar
  41. 41.
    Deng D et al (2009) Energy Environ Sci 2(8):818CrossRefGoogle Scholar
  42. 42.
    Gligor F, de Leeuw SW (2006) Solid State Ion 177(26–32):2741CrossRefGoogle Scholar
  43. 43.
    Johnson OW (1964) Phys Rev 136(1):284CrossRefGoogle Scholar
  44. 44.
    Koudriachova MV, Harrison NM, de Leeuw SW (2001) Phys Rev Lett 86(7):1275CrossRefGoogle Scholar
  45. 45.
    Macklin WJ, Neat RJ (1992) Solid State Ion 53–56(Pt 1):694CrossRefGoogle Scholar
  46. 46.
    Feist TP, Davies PK (1992) J Solid State Chem 101(2):275CrossRefGoogle Scholar
  47. 47.
    Marchand R, Brohan L, Tournoux M (1980) Mater Res Bull 15(8):1129CrossRefGoogle Scholar
  48. 48.
    Zukalova M et al (2005) Chem Mater 17(5):1248CrossRefGoogle Scholar
  49. 49.
    Nuspl G, Yoshizawa K, Yamabe T (1997) J Mater Chem 7(12):2529CrossRefGoogle Scholar
  50. 50.
    Dambournet D, Belharouak I, Amine K (2010) Chem Mater 22(3):1173CrossRefGoogle Scholar
  51. 51.
    Lee D-H et al (2008) Eur J Inorg Chem 6:878Google Scholar
  52. 52.
    Anji Reddy M et al (2008) Electrochem Solid State Lett 11(8):A132CrossRefGoogle Scholar
  53. 53.
    Koudriachova MV, Matar M (2009) ECS Trans 16(42):63Google Scholar
  54. 54.
    Reddy MA et al (2007) Electrochem Solid State Lett 10(2):A29CrossRefGoogle Scholar
  55. 55.
    Zhang Y-X, Zhang X-l, Zheng H-H (2009) Dianchi 39(2):106Google Scholar
  56. 56.
    Kavan L et al (2000) J Phys Chem B 104(50):12012CrossRefGoogle Scholar
  57. 57.
    Kavan L, Kratochvilova K, Graetzel M (1995) J Electroanal Chem 394(1–2):93Google Scholar
  58. 58.
    Tang Y et al (2009) J Mater Chem 19(33):5980CrossRefGoogle Scholar
  59. 59.
    Sudant G et al (2005) J Mater Chem 15(12):1263Google Scholar
  60. 60.
    Jiang C et al (2007) J Power Sources 166(1):239CrossRefGoogle Scholar
  61. 61.
    Fattakhova-Rohlfing D et al (2007) Adv Funct Mater 17(1):123CrossRefGoogle Scholar
  62. 62.
    Kubiak P et al (2008) J Power Sources 175(1):510CrossRefGoogle Scholar
  63. 63.
    Liu Z, Hong L, Guo B (2005) J Power Sources 143(1–2):231CrossRefGoogle Scholar
  64. 64.
    Armstrong AR et al (2005) Adv Mater 17(7):862CrossRefGoogle Scholar
  65. 65.
    Wang D (2008) Chem Mater 20(10):3435CrossRefGoogle Scholar
  66. 66.
    Oh SW, Park S-H, Sun Y-K (2006) J Power Sources 161(2):1314CrossRefGoogle Scholar
  67. 67.
    Sushko ML, Rosso KM, Liu J (2010) J Phys Chem Lett 1(13):1967CrossRefGoogle Scholar
  68. 68.
    Wang J et al (2007) J Phys Chem C 111(40):14925CrossRefGoogle Scholar
  69. 69.
    Wilhelm O et al (2004) J Power Sources 134(2):197CrossRefGoogle Scholar
  70. 70.
    Poizot P et al (2000) Nature 407(6803):496CrossRefGoogle Scholar
  71. 71.
    Exnar I et al (1997) J Power Sources 68(2):720CrossRefGoogle Scholar
  72. 72.
    Kang JW et al (2011) J Electrochem Soc 158(2):A59CrossRefGoogle Scholar
  73. 73.
    Tsuji T et al (2009) Appl Surf Sci 255(24):9626CrossRefGoogle Scholar
  74. 74.
    Baudrin E et al (2007) Electrochem Commun 9(2):337CrossRefGoogle Scholar
  75. 75.
    Jiang C et al (2007) Electrochem Solid State Lett 10(5):A127CrossRefGoogle Scholar
  76. 76.
    Reddy MA et al (2006) Electrochem Commun 8(8):1299CrossRefGoogle Scholar
  77. 77.
    Kubiak P et al (2009) J Power Sources 194(2):1099CrossRefGoogle Scholar
  78. 78.
    Pfanzelt M et al (2011) J Power Sources 196(16):6815CrossRefGoogle Scholar
  79. 79.
    Pfanzelt M, Kubiak P, Wohlfahrt-Mehrens M (2010) Electrochem Solid State Lett 13(7):A91CrossRefGoogle Scholar
  80. 80.
    Chen JS, Lou XW (2010) J Power Sources 195(9):2905CrossRefGoogle Scholar
  81. 81.
    Khomane Ramdas B (2011) J Colloid Interface Sci 356(1):369CrossRefGoogle Scholar
  82. 82.
    Qiao H et al (2010) Chem Phys Lett 490(4–6):180CrossRefGoogle Scholar
  83. 83.
    Dong S et al (2011) Thin Solid Films 519(18):5978CrossRefGoogle Scholar
  84. 84.
    Armstrong G et al (2006) Electrochem Solid State Lett 9(3):A139CrossRefGoogle Scholar
  85. 85.
    Inaba M et al (2009) J Power Sources 189(1):580CrossRefGoogle Scholar
  86. 86.
    Zhu G-N, Wang C-X, Xia Y-Y (2011) J Power Sources 196(5):2848CrossRefGoogle Scholar
  87. 87.
    Wang X et al (2011) J Cent South Univ Technol (Engl Ed) 18(2):406CrossRefGoogle Scholar
  88. 88.
    Armstrong AR et al (2004) Angew Chem Int Ed 43(17):2286CrossRefGoogle Scholar
  89. 89.
    Armstrong AR et al (2005) Adv Mater (Weinheim, Ger) 17(7):862CrossRefGoogle Scholar
  90. 90.
    Armstrong AR et al (2005) J Power Sources 146(1–2):501CrossRefGoogle Scholar
  91. 91.
    Beuvier T et al (2010) Inorg Chem 49(18):8457CrossRefGoogle Scholar
  92. 92.
    Yang Z et al (2011) Electrochem Commun 13(1):46CrossRefGoogle Scholar
  93. 93.
    Liu B et al (2010) J Mater Res 25(8):1588CrossRefGoogle Scholar
  94. 94.
    Wang Y, Wu M, Zhang WF (2008) Electrochim Acta 53(27):7863CrossRefGoogle Scholar
  95. 95.
    Li J et al (2011) Chem Commun 47(12):3439CrossRefGoogle Scholar
  96. 96.
    Xiang G et al (2010) Chem Commun 46(36):6801CrossRefGoogle Scholar
  97. 97.
    Estruga M, Domingo C, Ayllon JA (2010) Mater Lett 64(21):2357CrossRefGoogle Scholar
  98. 98.
    Wessel C et al (2011) Chem Eur J 17(3):775Google Scholar
  99. 99.
    Lan Y et al (2005) Adv Funct Mater 15(8):1310CrossRefGoogle Scholar
  100. 100.
    Kim J, Cho J (2007) J Electrochem Soc 154(6):A542CrossRefGoogle Scholar
  101. 101.
    Choi MG et al (2010) Electrochim Acta 55(20):5975CrossRefGoogle Scholar
  102. 102.
    Yan J et al (2009) Mater Chem Phys 118(2–3):367CrossRefGoogle Scholar
  103. 103.
    Wang K et al (2007) Adv Mater 19(19):3016CrossRefGoogle Scholar
  104. 104.
    Gao XP et al (2005) Electrochem Solid State Lett 8(1):A26CrossRefGoogle Scholar
  105. 105.
    Zhou Y-K et al (2003) J Electrochem Soc 150(9):A1246CrossRefGoogle Scholar
  106. 106.
    Wang Q, Wen Z, Li J (2006) Inorg Chem 45(17):6944CrossRefGoogle Scholar
  107. 107.
    Saravanan K, Ananthanarayanan K, Balaya P (2010) Energy Environ Sci 3(7):939CrossRefGoogle Scholar
  108. 108.
    Fu LJ et al (2007) Electrochem Commun 9(8):2140CrossRefGoogle Scholar
  109. 109.
    Wang Z et al (2007) Electrochem Solid State Lett 10(3):A77CrossRefGoogle Scholar
  110. 110.
    Yoon S, Manthiram A (2011) J Phys Chem C 115(19):9410CrossRefGoogle Scholar
  111. 111.
    Lai C et al (2011) J Power Sources 196(10):4735CrossRefGoogle Scholar
  112. 112.
    Wang J et al (2011) J Phys Chem C 115(5):2529CrossRefGoogle Scholar
  113. 113.
    Jung H-G et al (2009) Electrochem Commun 11(4):756CrossRefGoogle Scholar
  114. 114.
    Guo Y-G, Hu Y-S, Maier J (2006) Chem Commun 26:2783Google Scholar
  115. 115.
    Wu QL, Subramanian N, Rankin SE (2011) Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating, Langmuir. ACS ASAPGoogle Scholar
  116. 116.
    Wu Q-L, Rankin SE (2011) J Phys Chem C 115(24):11925CrossRefGoogle Scholar
  117. 117.
    Fang H-T et al (2009) Nanotechnology 20(22):2257011CrossRefGoogle Scholar
  118. 118.
    Ortiz GF et al (2009) Chem Mater 21(1):63CrossRefGoogle Scholar
  119. 119.
    Wei Z et al (2010) J Solid State Electrochem 14(6):1045CrossRefGoogle Scholar
  120. 120.
    Furukawa H, Hibino M, Honma I (2004) J Electrochem Soc 151(4):A527CrossRefGoogle Scholar
  121. 121.
    Jung JH et al (2002) Chem Mater 14(4):1445CrossRefGoogle Scholar
  122. 122.
    Lee J-H et al (2005) J Phys Chem B 109(27):13056CrossRefGoogle Scholar
  123. 123.
    Kasuga T et al (1998) Langmuir 14(12):3160CrossRefGoogle Scholar
  124. 124.
    Tian ZR et al (2003) J Am Chem Soc 125(41):12384CrossRefGoogle Scholar
  125. 125.
    Gong D et al (2001) J Mater Res 16(12):3331CrossRefGoogle Scholar
  126. 126.
    Mor GK et al (2003) J Mater Res 18(11):2588CrossRefGoogle Scholar
  127. 127.
    Hassan FMB et al (2009) J Electrochem Soc 156(12):K227CrossRefGoogle Scholar
  128. 128.
    Paulose M et al (2006) J Phys Chem B 110(33):16179CrossRefGoogle Scholar
  129. 129.
    Prakasam HE et al (2007) J Phys Chem C 111(20):7235CrossRefGoogle Scholar
  130. 130.
    Paulose M et al (2007) J Phys Chem C 111(41):14992CrossRefGoogle Scholar
  131. 131.
    Cai Q et al (2005) J Mater Res 20(1):230CrossRefGoogle Scholar
  132. 132.
    Tsuchiya H et al (2005) Electrochem Commun 7(6):576CrossRefGoogle Scholar
  133. 133.
    Macak JM et al (2005) Angew Chem Int Ed 44(45):7463CrossRefGoogle Scholar
  134. 134.
    Jiao F, Shaju KM, Bruce PG (2005) Angew Chem Int Ed 44(40):6550CrossRefGoogle Scholar
  135. 135.
    Kim H, Chi J (2008) J Mater Chem 18(7):771CrossRefGoogle Scholar
  136. 136.
    Cao F-F et al (2010) Chem Mater 22(5):1908CrossRefGoogle Scholar
  137. 137.
    Ishii Y et al (2010) J Phys Chem Solids 71(4):511CrossRefGoogle Scholar
  138. 138.
    Dechakiatkrai C et al (2009) J Nanosci Nanotechnol 9(2):955CrossRefGoogle Scholar
  139. 139.
    Lee SW et al (2010) Nat Nanotechnol 5(7):531CrossRefGoogle Scholar
  140. 140.
    Moriguchi I et al (2008) J Phys Chem B 112(46):14560CrossRefGoogle Scholar
  141. 141.
    Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16(16):2141CrossRefGoogle Scholar
  142. 142.
    Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111(21):7727CrossRefGoogle Scholar
  143. 143.
    Choi DW et al (2010) Electrochem Commun 12(3):378CrossRefGoogle Scholar
  144. 144.
    Meng XB et al (2011) Nanotechnology 22(16):1Google Scholar
  145. 145.
    Wagemaker M, Borghols WJH, Mulder FM (2007) J Am Chem Soc 129(14):4323CrossRefGoogle Scholar
  146. 146.
    Qiu YC et al (2010) ACS Nano 4(11):6515CrossRefGoogle Scholar
  147. 147.
    Wang DH et al (2009) ACS Nano 3(4):907CrossRefGoogle Scholar
  148. 148.
    Gao J et al (2008) Electrochim Acta 53(5):2376CrossRefGoogle Scholar
  149. 149.
    Xu J et al (2008) J Power Sources 175(2):903CrossRefGoogle Scholar
  150. 150.
    Yang ZX et al (2011) J Mater Chem 21(24):8591CrossRefGoogle Scholar
  151. 151.
    Fu LJ et al (2006) J Power Sources 159(1):219CrossRefGoogle Scholar
  152. 152.
    Das SK, Darmakolla S, Bhattacharyya AJ (2010) J Mater Chem 20(8):1600CrossRefGoogle Scholar
  153. 153.
    Grugeon S et al (2001) J Electrochem Soc 148(4):A285CrossRefGoogle Scholar
  154. 154.
    Wu M-S, Chiang P-CJ (2006) Electrochem Commun 8(3):383CrossRefGoogle Scholar
  155. 155.
    Lee JH et al (2011) Appl Phys A Mater Sci Process 102(3):545CrossRefGoogle Scholar
  156. 156.
    Kanjwal MA et al (2010) J Ceram Process Res 11(4):437Google Scholar
  157. 157.
    Uchiyama H et al (2009) Solid State Ion 180(14–16):956CrossRefGoogle Scholar
  158. 158.
    Du GD et al (2010) J Mater Chem 20(27):5689CrossRefGoogle Scholar
  159. 159.
    Roginskaya YE et al (2006) Russ J Electrochem 42(4):355CrossRefGoogle Scholar
  160. 160.
    Guo YG et al (2007) Adv Mater 19(16):2087CrossRefGoogle Scholar
  161. 161.
    Zhu G et al (2011) J Alloys Compd 509(29):7814CrossRefGoogle Scholar
  162. 162.
    Rajkumar N, Kanmani SS, Ramachandran K (2011) Adv Sci Lett 4(2):627CrossRefGoogle Scholar
  163. 163.
    Park K et al (2011) J Phys Chem C 115(11):4927CrossRefGoogle Scholar
  164. 164.
    Balaya P et al (2003) Adv Funct Mater 13(8):621CrossRefGoogle Scholar
  165. 165.
    Wang YG, Wang ZD, Xia YY (2005) Electrochim Acta 50(28):5641CrossRefGoogle Scholar
  166. 166.
    Song T et al (2010) Nano Lett 10(5):1710CrossRefGoogle Scholar
  167. 167.
    Huang S, Zhu T (2011) J Power Sources 196(7):3664CrossRefGoogle Scholar
  168. 168.
    Park S-E et al (2009) Trans Nonferr Met Soc Chin 19(4):1023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xin Su
    • 1
  • QingLiu Wu
    • 1
  • Xin Zhan
    • 2
  • Ji Wu
    • 1
  • Suying Wei
    • 3
  • Zhanhu Guo
    • 4
    Email author
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Department of ChemistryUniversity of KentuckyLexingtonUSA
  3. 3.Department of Chemistry and BiochemistryLamar UniversityBeaumontUSA
  4. 4.Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations