Skip to main content
Log in

Components distribution in Cu(In,Ga)Se2 films prepared by selenization of evaporated metallic precursors on bare and ITO-coated glass substrates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cu(In,Ga)Se2 thin films have been prepared by selenization of the evaporated metallic precursors on transparent and conductive ITO-coated as well as uncoated glass substrates, by starting from slightly Cu-rich or Cu-poor overall metallic proportions. The objective is to determine the influence of the Cu availability on the constituents distribution achieved after selenization, by means of data obtained at several film depths by grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy that have been related to the overall optical and structural characteristics of the material. This study points out the possibility of achieving homogeneous or graded absorber layers, showing for homogeneous samples an ITO/Cu(In,Ga)Se2 interface with ohmic electrical characteristics suitable to act as back contact for semitransparent photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CIGS:

Copper indium gallium selenide

GIXRD:

Grazing incidence X-ray diffraction

ITO:

Indium tin oxide

SLG:

Soda lime glass

TCO:

Transparent conducting oxide

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock HW, Werner JH (2001) Thin Solid Films 387:11

    Article  CAS  Google Scholar 

  2. Lundberg O, Edoff M, Stolt L (2005) Thin Solid Films 480/481:520

    Article  Google Scholar 

  3. Gloeckler M, Sites JR (2005) J Phys Chem Solids 66:1891

    Article  CAS  Google Scholar 

  4. Lundberg O, Bodegard M, Malmström J, Stolt L (2003) Prog Photovolt: Res Appl 11:77

    Article  CAS  Google Scholar 

  5. Voorwinden G, Kniese R, Powalla M (2003) Thin Solid Films 431/432:538

    Article  Google Scholar 

  6. Kaufmann CA, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock HW (2009) Sol Energy Mater Sol Cells 93:859

    Article  CAS  Google Scholar 

  7. Caballero R, Guillén C (2003) Thin Solid Films 431/432:200

    Article  Google Scholar 

  8. Caballero R, Guillén C, Gutiérrez MT, Kaufmann CA (2006) Prog Photovolt Res Appl 14:145

    Article  CAS  Google Scholar 

  9. Li W, Sun Y, Liu W, Zhou L (2006) Sol Energy 80:191

    Article  CAS  Google Scholar 

  10. Nakada T, Hirabayashi Y, Tokado T, Ohmori D, Mise T (2004) Sol Energy 77:739

    Article  CAS  Google Scholar 

  11. Nakada T (2005) Thin Solid Films 480/481:419

    Article  Google Scholar 

  12. Rostan PJ, Mattheis J, Bilger G, Rau U, Werner JH (2005) Thin Solid Films 480/481:67

    Article  Google Scholar 

  13. Abou-Ras D, Kostorz G, Bremaud D, Kälin M, Kurdesau FV, Tiwari AN, Döbeli M (2005) Thin Solid Films 480/481:433

    Article  Google Scholar 

  14. Friedrich EJ, Trigo JF, Ramiro J, Guillén C, Merino JM, León M (2009) J Phys D Appl Phys 42:085401

    Article  Google Scholar 

  15. Venkatachalam M, Kannan MD, Muthukumarasamy N, Prasanna S, Jayakumar S, Balasundaraprabhu R, Saroja M (2009) Sol Energy 83:1652

    Article  CAS  Google Scholar 

  16. Seyrling S, Calnan S, Bücheler S, Hüpkes J, Wenger S, Brémaud D, Zogg H, Tiwari AN (2009) Thin Solid Films 517:2411

    Article  CAS  Google Scholar 

  17. Guillén C, Herrero J (2006) Vacuum 80:615

    Article  Google Scholar 

  18. Guillén C, Herrero J (2006) Thin Solid Films 510:260

    Article  Google Scholar 

  19. Caballero R, Maffiotte C, Guillén C (2005) Thin Solid Films 474:70

    Article  CAS  Google Scholar 

  20. Bindu K, Fair PK (2004) Semicond Sci Technol 19:1348

    Article  CAS  Google Scholar 

  21. Jaffe JE, Zunger A (1983) Phys Rev B 28:5822

    Article  CAS  Google Scholar 

  22. Alonso MI, Garriga M, Durante Rincón CA, Hernández E, León M (2002) Appl Phys A 74:659

    Article  CAS  Google Scholar 

  23. Han SH, Hasoon FS, Pankow JW, Hermann AM, Levi DH (2005) Appl Phys Lett 87:151904

    Article  Google Scholar 

  24. López-García J, Guillén C (2009) Phys Status Solidi A 206:84

    Article  Google Scholar 

  25. Joint Committee of Powder Diffraction Standards, Powder Diffraction Files: card 00-035-1102 for CuIn0.7Ga0.3Se2, card 00-049-1456 for CuSe, card 00-006-0416 for In2O3, card 00-040-1487 for CuInSe2, card 00-040-1488 for CuIn0.5Ga0.5Se2, card 00-035-1100 for CuGaSe2

  26. López-García J, Guillén C (2010) Sol Energy Mater Sol Cells 94:1263

    Article  Google Scholar 

  27. Kötschau IM, Schock HW (2003) J Phys Chem Solids 64:1559

    Article  Google Scholar 

  28. Niki S, Fons PJ, Yamada A, Lacroix Y, Shibata H, Oyanagi H, Nishitani M, Negami T, Wada T (1999) Appl Phys Lett 74:1630

    Article  CAS  Google Scholar 

  29. Nishiwaki S, Siebentritt S, Giersig M, Lux-Steiner MC (2003) J Appl Phys 94:6864

    Article  CAS  Google Scholar 

  30. Barreau N, Lähnemann J, Couzinié-Devy F, Assmann L, Bertoncini P, Kessler J (2009) Sol Energy Mater Sol Cells 93:2013

    Article  CAS  Google Scholar 

  31. Mönig H, Fischer CH, Grimm A, Johnson B, Kaufmann CA, Caballero R, Lauermann I, Lux-Steiner MC (2010) J Appl Phys 107:113540

    Article  Google Scholar 

  32. Hergert F, Hock R, Weber A, Purwins M, Palm J, Probst V (2005) J Phys Chem Solids 66:1903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Spanish Ministry of Science and Innovation through the TEC2007-66506-C02-01/MIC project. The authors also thank J. Velázquez and I. Carabias (CAIS, UCM) and to C. Maffiotte (Dep. Tecnología, CIEMAT) for their assistance in the characterization measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guillén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillén, C., Herrero, J. Components distribution in Cu(In,Ga)Se2 films prepared by selenization of evaporated metallic precursors on bare and ITO-coated glass substrates. J Mater Sci 47, 1836–1842 (2012). https://doi.org/10.1007/s10853-011-5970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5970-1

Keywords

Navigation