Skip to main content
Log in

Nano structures through self-assembly of protected hydrophobic amino acids: encapsulation of rhodamine B dye by proline-based nanovesicles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of novel molecules for the creation of nanometer structures with specific properties has been the current interest of this research. We have developed a set of molecules from hydrophobic ω- and α-amino acids by protecting the –NH2 with Boc (t-butyloxycarbonyl) group and –CO2H with para-nitroanilide such as BocHN–Xx–CONH–(p–NO2)·C6H4, where Xx is γ-aminobutyric acid (γ-Abu), (l)-isoleucine, α-aminoisobutyric acid, proline, etc. These molecules generate various nanometer structures, such as nanofibrils, nanotubes and nanovesicles, in methanol/water through the self-assembly of bilayers in which the nitro benzene moieties are stacked in the middle and the Boc-protected amino acids parts are packed in the outer surface. The bilayers can be further stacked one over the other through hydrophobic interactions to form multilayer structure, which helps to generate different kinds of nanoscopic structures. The formation of the nanostructures has been facilitated through the participation of various noncovalent interactions, such as hydrophobic interactions, hydrogen bonding and aromatic π-stacking interactions. Fluorescence microscopy and UV studies reveal that the nanovesicles generated from pro-based molecule can encapsulate dye molecules which can be released by addition of acid (at pH 2). These single amino acid based molecules are both easy to synthesize and cost-effective and therefore offer novel scaffolds for the future design of nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reches M, Gazit E (2003) Science 300:625

    Article  CAS  Google Scholar 

  2. Reches M, Gazit E (2004) Nano Lett 4:581

    Article  CAS  Google Scholar 

  3. Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Peña D, Miller JE, van Swol F, Shelnutt JA (2004) Chem Commun 120:1044

    Article  Google Scholar 

  4. Gupta M, Bagaria A, Mishra A, Mathur P, Basu A, Ramakumar S, Chauhan VS (2007) Adv Mater 19:858

    Article  CAS  Google Scholar 

  5. Yan X, He Q, Wang K, Duan L, Cui Y, Li J (2007) Angew Chem Int Ed 46:2431

    Article  CAS  Google Scholar 

  6. Zhang X, Zhang X, Zou K, Lee CS, Lee ST (2007) J Am Chem Soc 129:3527

    Article  CAS  Google Scholar 

  7. Zhang X, Zhang X, Shi W, Meng X, Lee CS, Lee ST (2007) Angew Chem Int Ed 46:1525

    Article  CAS  Google Scholar 

  8. Fairman R, Àkerfeldt KS (2005) Curr Opin Struct Biol 15:453

    Article  CAS  Google Scholar 

  9. Vriezema DM, Hoogboom J, Velonia K, Takazawa K, Chirstianen PCM, Maan JC, Rowan AE, Nolte RJM (2003) Angew Chem Int Ed 42:772

    Article  CAS  Google Scholar 

  10. Diaz N, Simon F-X, Rawiso M, Decher G, Jestin J, Mésini P (2005) Angew Chem Int Ed 44:3260

    Article  CAS  Google Scholar 

  11. Zhang S, Holmes T, Lockshin C, Rich A (1993) Proc Natl Acad Sci USA 90:3334

    Article  CAS  Google Scholar 

  12. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Biomaterials 16:1385

    Article  Google Scholar 

  13. Holmes TC, de Lacalle S, Liu G, Rich A, Zhang S (2000) Proc Natl Acad Sci USA 97:6728

    Article  CAS  Google Scholar 

  14. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A (2002) J Proc Natl Acad Sci USA 99:9996

    Article  CAS  Google Scholar 

  15. Marini DM, Hwang W, Lauffenburger DA, Zhang S, Kamm RD (2002) Nano Lett 2:295

    Article  CAS  Google Scholar 

  16. Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD (1998) J Biomater Sci Polymer Ed 9:297

    Article  CAS  Google Scholar 

  17. Caplan M, Moore P, Zhang S, Kamm R, Lauffenburger D (2000) Biomacromolecules 1:627

    Article  CAS  Google Scholar 

  18. Santoso SS, Vauthey S, Zhang S (2002) Curr Opin Colloid Interface Sci 7:262

    Article  CAS  Google Scholar 

  19. Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Proc Natl Acad Sci USA 99:5355

    Article  CAS  Google Scholar 

  20. Santoso S, Hwang W, Hartman H, Zhang S (2002) Nano Lett 2:687

    Article  CAS  Google Scholar 

  21. Jayakumar R, Murugesan M, Rafiuddin Ahmed M (2000) Bioorg Med Chem Lett 10:1547

    Article  CAS  Google Scholar 

  22. Israelachvili JN, Mitchell DJ, Ninham BW (1977) Biochim Biophys Acta 470:185

    Article  CAS  Google Scholar 

  23. Lasic DD, Papahadjopoulos D (1996) Medical Applications of Liposomes. Elsevier Science, Amsterdam

    Google Scholar 

  24. Hartgerink JD, Beniash E, Stupp SI (2002) Proc Natl Acad Sci USA 99:5133

    Article  CAS  Google Scholar 

  25. Hench LL, Wilson J (1984) Science 226:630

    Article  CAS  Google Scholar 

  26. Hench LL, Polak JM (2002) Science 295:1016

    Article  Google Scholar 

  27. Kim VA, Mooney DJ (1998) Trends Biotechnol 16:224

    Article  CAS  Google Scholar 

  28. Weiner S, Traub W (1986) FEBS Lett 206:262

    Article  CAS  Google Scholar 

  29. Wiener S, Addadi LJ (1997) Mater Chem 7:689

    Article  Google Scholar 

  30. Hartgerink JD, Beniash E, Stupp SI (2001) Science 294:1684

    Article  CAS  Google Scholar 

  31. Pierschbacher MD, Ruoslahti EJ (1987) Biol Chem 262:17294

    CAS  Google Scholar 

  32. Cai W, Wang G-T, Xu Y-X, Jiang X-K, Li Z-T (2008) J Am Chem Soc 130:6936

    Article  CAS  Google Scholar 

  33. You L-Y, Jiang X-K, Li Z-T (2009) Tetrahedron 65:9494

    Article  CAS  Google Scholar 

  34. Wang C, Yin S, Chen S, Xu H, Wang Z, Zhang X (2008) Angew Chem Int Ed 47:9049

    Article  CAS  Google Scholar 

  35. Ajayaghosh A, Chithra P, Varghese R (2007) Angew Chem Int Ed 46:230

    Article  CAS  Google Scholar 

  36. Yan X, Cui Y, He Q, Wang K, Li J, Mu W, Wang B, Ou-yang Z-C (2008) Chem Eur J 14:5974

    Article  CAS  Google Scholar 

  37. Kim B-S, Hong D-J, Bae J, Lee M (2005) J Am Chem Soc 127:16333

    Article  CAS  Google Scholar 

  38. Gazit E (2002) FASEB J 16:77

    Article  CAS  Google Scholar 

  39. Ghosh S, Singh SK, Verma S (2007) Chem Commun 22:2296

    Article  Google Scholar 

  40. Ghosh S, Singh P, Verma S (2008) Tetrahedron 64:1250

    Article  CAS  Google Scholar 

  41. Joshi KB, Verma S (2008) Angew Chem Int Ed 47:2860

    Article  CAS  Google Scholar 

  42. Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651

    Google Scholar 

  43. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459

    Article  CAS  Google Scholar 

  44. Antonietti M, Förster S (2003) Adv Mater 15:1323

    Article  CAS  Google Scholar 

  45. Förster S, Schmidt M (1995) Adv. Polym Sci 120:51

    Google Scholar 

  46. Mishra A, Panda JJ, Basu A, Chauhan VS (2008) Langmuir 24:4571

    Article  CAS  Google Scholar 

  47. Förster S, Abetz V, Muller HE (2004) Advances in Polymer Science. Springer, Berlin

    Google Scholar 

  48. Jenekhe SA, Chen XL (1999) Science 283:372

    Article  CAS  Google Scholar 

  49. Jenekhe SA, Chen XL (1998) Science 279:1903

    Article  CAS  Google Scholar 

  50. Holder SJ, Hiorns RC, Sommerdijk N, Williams SJ, Jones RG, Nolte RJM (1998) Chem Commun 14:1445

    Article  Google Scholar 

  51. Bowerman CJ, Ryan DM, Nissan DA, Nilsson BL (2009) Mol Biosyst 5:1058

    Article  CAS  Google Scholar 

  52. Kim W, Hecht MH (2006) PNAS 103:15824

    Article  CAS  Google Scholar 

  53. Bodanszky M, Bodanszky A (1984) The Practice of Peptide Synthesis. Springer, New York

    Google Scholar 

  54. Banerjee A, Balaram P (1997) Curr Sci 73:1067

    CAS  Google Scholar 

  55. Dutt A, Drew MGB, Pramanik A (2005) Org Biomol Chem 3:2250

    Article  CAS  Google Scholar 

  56. Pandit P, Chatterjee N, Halder S, Hota SK, Patra A, Maiti DK (2009) J Org Chem 74:2581

    Article  CAS  Google Scholar 

  57. Lee JK, Lentz BR (1997) Biochemistry 36:6251

    Article  CAS  Google Scholar 

  58. Ghosh S, Reches M, Gazit E, Verma S (2007) Angew Chem Int Ed 46:2002

    Article  CAS  Google Scholar 

  59. Mukherjee P, Drew MGB, Ghosh A (2009) Inorg Chem 48:2364

    Article  CAS  Google Scholar 

  60. Bose PP, Das AK, Hegde RP, Shamala N, Banerjee A (2007) Chem Mater 19:6150

    Article  CAS  Google Scholar 

  61. Panda JJ, Kaul A, Alam S, Babbar AK, Mishra AK, Chauhan VS (2011) Ther Deliv 2:193

    Article  CAS  Google Scholar 

  62. Lu Y, Zhao X (2011) Int J Pept Res Ther 17:81

    Article  CAS  Google Scholar 

  63. Koley P, Pramanik A (2011) Adv Funct Mater. doi: 10.1002/adfm.201101465

  64. Kar S, Drew MGB, Pramanik A (2011) Prot Pept Lett 18:886

    Article  CAS  Google Scholar 

  65. Klyachko VA, Jackson B (2002) Nature 418:89

    Article  CAS  Google Scholar 

  66. Braell WA (1987) Proc Natl Acad Sci USA 84:1137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Kar would like to thank CSIR, New Delhi, India for a senior research fellowship (SRF). The financial assistance of UGC, New Delhi is acknowledged (Major Research Project, No.32-190/2006[SR]). We acknowledge the financial assistance of Centre for Research in Nanoscience & Nanotechnology (CRNN), University of Calcutta. We thank EPSRC and the University of Reading, UK for funds for Oxford Diffraction X-Calibur CCD diffractometer. We would like to thank Indian Institute of Chemical Biology, Kolkata, for helping us to perform the TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Pramanik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Drew, M.G.B. & Pramanik, A. Nano structures through self-assembly of protected hydrophobic amino acids: encapsulation of rhodamine B dye by proline-based nanovesicles. J Mater Sci 47, 1825–1835 (2012). https://doi.org/10.1007/s10853-011-5969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5969-7

Keywords

Navigation