Skip to main content
Log in

Discussion on the influence of DES content in CA-based polymer electrolytes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The degree of crystallinity in the matrix formed by cellulose acetate (CA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were reduced by embedding with deep eutectic solvent (DES) which is a type of ionic mixture synthesized from choline chloride and urea in a specific ratio. The fabrications of thin films were done by solution casting technique. The sample with composition of CA:LiTFSI:DES (28 wt%:12 wt%:60 wt%) appears as the highest conducting sample with the calculated value of 2.61 × 10−3 S cm−1 at ambient temperature. This high conducting sample possesses low relative viscosity so as to have high ion fluidity of 0.19. SEM micrographs were used to study the structural alternation that took place in the presence of DES at different ratio in the polymer electrolytes matrix. The dielectric loss tangent plot reveals the low relaxation time for high conducting sample which has immense movements of lithium conducting ion (Li+). The enhancement in the ionic conductivity of the DES plasticized samples with temperature obeys Arrhenius rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajendran S, Sivakumar M, Subadevi R (2004) Mater Lett 58:641. doi:10.1016/S0167-577X(03)00585-8

    Article  CAS  Google Scholar 

  2. Siva Kumar J, Subrahmanyam AR, Jaipal Reddy M, Subba Rao UV (2006) Mater Lett 60:3346. doi:10.1016/j.matlet.2006.03.015

    Article  Google Scholar 

  3. Shriver DF, Papke BL, Ratner MA, Dupon R, Wong T, Brodwin M (1981) Solid State Ion 5:83. doi:10.1016/0167-2738(81)90199-5

    Article  CAS  Google Scholar 

  4. Armand MB (1986) Annu Rev Mater Sci 16:245. doi:10.1146/annurev.ms.16.080186.001333

    Article  CAS  Google Scholar 

  5. Ratner MA, Shriver DF (1988) Chem Rev 88:109. doi:10.1021/cr00083a006

    Article  CAS  Google Scholar 

  6. Ramesh S, Winie T, Arof AK (2010) J Mater Sci 45:1283. doi:10.1007/s10853-009-4079-2

    Article  Google Scholar 

  7. Reddy MJ, Sreekanth T, Chandrashekar M, Subba Rao UV (2000) J Mater Sci 35:2841. doi:10.1023/A:1004707521250

    Article  CAS  Google Scholar 

  8. Vieira DF, Avellaneda CO, Pawlicka A (2007) Electrochim Acta 53:1404. doi:10.1016/j.electacta.2007.04.034

    Article  CAS  Google Scholar 

  9. Xu YX, Miladinov V, Hanna MA (2004) Cereal Chem 81:735

    Article  CAS  Google Scholar 

  10. Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) Carbohyd Polym 76:482. doi:10.1016/j.carbpol.2008.11.005

    Article  Google Scholar 

  11. Selvakumar M, Krishna Bhat D (2008) J Appl Polym Sci 110:594. doi:10.1002/app.28671

    Article  CAS  Google Scholar 

  12. Subramaniam CK, Ramya CS, Ramya K (2008) J Appl Electrochem 41:197. doi:10.1007/s10800-010-0224-5

    Article  Google Scholar 

  13. Ramesh S, Lu S-C (2008) J Power Sources 185:1439. doi:10.1016/j.jpowsour.2008.07.055

    Article  CAS  Google Scholar 

  14. Webber AJ (1991) J Electrochem Soc 138:2586. doi:10.1149/1.2087287

    Article  CAS  Google Scholar 

  15. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Chem Commun 39:70. doi:10.1039/B210714G

    Article  Google Scholar 

  16. Jhong H-R, Wong DS-H, Wan C-C, Wang Y-Y, Wei T-C (2009) Electrochem Commun 11:209. doi:10.1016/j.elecom.2008.11.001

    Article  CAS  Google Scholar 

  17. Zhang J, Wu T, Chen S, Feng P, Bu X (2009) Angew Chem Int Ed Engl 48:3486. doi:10.1002/anie.200900134

    Article  CAS  Google Scholar 

  18. Uma T, Mahalingam T, Stimming U (2003) Mater Chem Phys 82:478. doi:10.1016/S0254-0584(03)00277-3

    Article  CAS  Google Scholar 

  19. Jana S, Zhong W-H (2008) J Mater Sci 43:4607. doi:10.1007/s10853-008-2677-z

    Article  CAS  Google Scholar 

  20. Ahmad A, Rahman MYA, Low SP, Hamzah H (2011) ISRN Mater Sci 2011:1. doi:10.5402/2011/401280

    Article  Google Scholar 

  21. Wu C, Wu F, Bai Y, Feng T, Pan C, Ye L, Feng Z (2009) J Chil Chem Soc 54:299. doi:10.4067/S0717-97072009000300020

    Article  CAS  Google Scholar 

  22. Yahya MZA, Ali AMM, Mohammat MF, Hanafiah MAKM, Mustaffa M, Ibrahim SC, Darus ZM, Harun MK (2006) J Appl Sci 6:1287. doi:10.3923/jas.2006.1287.1291

    Article  CAS  Google Scholar 

  23. Winie T, Ramesh S, Arof AK (2009) Phys B 404:4308. doi:10.1016/j.physb.2009.08.004

    Article  CAS  Google Scholar 

  24. Anantha PS, Hariharan K (2005) Solid State Ion 176:155. doi:10.1016/j.ssi.2004.07.006

    Article  CAS  Google Scholar 

  25. Sharma JP, Sekhon SS (2007) Solid State Ion 178:439. doi:10.1016/j.ssi.2007.01.017

    Article  CAS  Google Scholar 

  26. Paradhan DK, Choundhary RNP, Samantaray BK (2008) Int J Electrochem Sci 3:597

    Google Scholar 

  27. Singh PK, Kim K-W, Rhee H-W (2008) Electrochem Commun 10:1769. doi:10.1016/j.elecom.2008.09.016

    Article  CAS  Google Scholar 

  28. Muralidharan P, Venkateswarlu M, Satyanarayana N (2004) Solid State Ion 166:27. doi:10.1016/j.ssi.2003.10.011

    Article  CAS  Google Scholar 

  29. Azizi Samir MAS, Alloin F, Sanchez J-Y, Gorecki W, Dufresne A (2004) J Phys Chem B 108:10845. doi:10.1021/jp0494483

    Article  Google Scholar 

  30. Ramesh S, Yahaya AH, Arof AK (2002) Solid State Ion 152–153:291. doi:10.1016/S0167-2738(02)00311-9

    Article  Google Scholar 

  31. Yahya MZA, Arof AK (2003) Euro Polym J 39:897. doi:10.1016/S0014-3057(02)00355-5

    Article  CAS  Google Scholar 

  32. Ramesh S, Liew C–W, Ezra M, Durairaj R (2010) Thermochim Acta 511:140. doi:10.1016/j.tca.2010.08.005

    Article  CAS  Google Scholar 

  33. Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009) Mater Chem Phys 115:40. doi:10.1016/j.matchemphys.2008.11.023

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education, Malaysia (FP009/2010B) and Universiti Malaya Research Grant (UMRG: RG140-11AFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S., Shanti, R. & Morris, E. Discussion on the influence of DES content in CA-based polymer electrolytes. J Mater Sci 47, 1787–1793 (2012). https://doi.org/10.1007/s10853-011-5964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5964-z

Keywords

Navigation