Skip to main content
Log in

Microstructure dependence of the magnetic properties of sintered Ni–Zn ferrites by solid-state reaction doped with V2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to improve the frequency range operation of Ni–Zn ferrites with the Ni0.7Zn0.3Fe2O4 stoichiometry in this study, they were doped with V2O3 at different concentrations (0, 0.25, 0.50, and 0.75 wt%). The samples were prepared by the solid-state reaction at 1250 °C for 24 h. The content and location of Vanadium in these ferrites allow us to determine its influence on their microstructure and magnetic properties. A single cubic spinel phase with lattice parameter variation was determined by the refinement of X-ray diffraction patterns. This refinement was achieved using the Rietveld method. The lattice parameter presents a slight enhancement with increasing Vanadium content up to 0.50 wt% of V2O3. The increase of intragrain porosity and the segregation of Vanadium at the grain boundary in samples with higher concentration of Vanadium show a narrow grain-size distribution that leads to a resonant character of the magnetic domain wall. A wide grain-size distribution determined in lower concentration of Vanadium results in a mixed resonant-relaxation dispersion. The use of V2O3 as a dopant in Ni–Zn ferrites increases the frequency operation and coercivity, H c, without abruptly degrading the saturation magnetization, M s. We, therefore conclude, that Vanadium may be used as a strong dopant for the preparation of ferrites for any particular high-frequency application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valenzuela R (1994) Magnetic ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Chen CW (1977) Magnetism and metallurgy of soft magnetic materials. North Holland, Amsterdam

    Google Scholar 

  3. Nakamura T (1997) J Magn Magn Mater 168:285

    Article  CAS  Google Scholar 

  4. Zhang L, Liu X, Guo X, Su M, Xu T, Song X (2010) Chem Eng J. doi:10.1016/j.cej.2011.08.041

  5. Lima UR, Nasar MC, Nasar RS, Rezende MC, Araújo V (2008) J Magn Magn Mater 320:1666

    Article  CAS  Google Scholar 

  6. Buswell M (1989) Microwave Theory Tech 37:860

    Article  Google Scholar 

  7. Srinivasan TT, Ravindranathan P, Cross LE, Roy R, Newnham RE, Sankar SG, Patil KC (1988) J Appl Phys 63:3789

    Article  CAS  Google Scholar 

  8. Kavas H, Baykal A, Toprak MS, Köseoğlu Y, Sertkol M, Aktas B (2009) J Alloys Compds 479:49

    Article  CAS  Google Scholar 

  9. Sertkol M, Köseoğlu Y, Baykal A, Kavas H, Toprak MS (2010) J Magn Magn Mater 322:866

    Article  CAS  Google Scholar 

  10. Atkher Hossain AKM, Mahmud ST, Seki M, Kawai T, Tabata H (2007) J Magn Magn Mater 312:210

    Article  Google Scholar 

  11. Sertkol M, Köseoğlu Y, Baykal A, Kavas H, Bozkurt A, Toprak MS (2009) J Alloys Compds 486:325

    Article  CAS  Google Scholar 

  12. Drofenik M, Žnidaršič A, Makovec D (1998) J Am Ceram Soc 81(11):2841

    Article  CAS  Google Scholar 

  13. Chen SH, Chang SC, Tsay CY, Liu KS, Lin IN (2001) J Eur Ceram Soc 21:1931

    Article  CAS  Google Scholar 

  14. Janghorban AK, Shokrollahi H (2007) J Magn Magn Mater 308:238

    Article  CAS  Google Scholar 

  15. Rodriguez-Carvajal J (1990) FULLPROF: a program for rietveld refinement and pattern matching analysis abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, Toulouse, France, p 127

  16. Rodriguez-Carvajal J, Roisnel T (1998) Newsletter 20:35

    Google Scholar 

  17. Cedillo E, Ocampo J, Rivera V, Valenzuela R (1980) J Phys E Sci Instrum 13:383

    Article  CAS  Google Scholar 

  18. Kasapoğlu N, Baykal A, Toprak MS, Koseoğlu Y, Bayrakdar H (2007) Turk J Chem 31:659

    Google Scholar 

  19. Baykal A, Kasapoğlu N, Koseoğlu Y, Toprak MS, Bayrakdar H (2008) J Alloys Compds 464:514

    Article  CAS  Google Scholar 

  20. Akther S, Choudhury MDA, Rahman J (2009) J Bangladesh Acad Sci 33(2):145

    CAS  Google Scholar 

  21. Hsu J-Y, Ko W-S, Chen C-J (1995) IEEE Trans Magn 31(6):3994

    Article  CAS  Google Scholar 

  22. Jean J-H, Lee C-H (2001) Jpn J Appl Phys 40:2232

    Article  CAS  Google Scholar 

  23. Hu J, Yan M, Luo W (2005) Phys B 368:251

    Article  CAS  Google Scholar 

  24. Shokrollahi H (2008) J Magn Magn Mater 320:463

    Article  CAS  Google Scholar 

  25. Herrera G, Rosales Escárcega IEA, Montiel H, Valenzuela R (2004) Study of the resonance-relaxation phenomena of Ni–Zn ferrites doped with V2O3 by high-frequency impedance spectroscopy, vol 1. Magnetic Materials, Singapore, Works Scientific eProceedings of PFAM XII, p 377

  26. Arcos D, Vázquez M, Valenzuela R, Vallet-Regí M (1999) J Mater Res 14(3):861

    Article  CAS  Google Scholar 

  27. Narayan R, Tripathi RB, Das BK, Jain GC (1983) J Mater Sci 18(6):1583. doi:10.1007/BF00542050

    Article  CAS  Google Scholar 

  28. Mirzaee O, Golozar MA, Shafyei A (2008) Mater Charact 59:638

    Article  CAS  Google Scholar 

  29. Mirzaee O, Shafyei A, Golozar MA, Shokrollahi H (2008) J Alloys Compds 461:312

    Article  CAS  Google Scholar 

  30. Sun J, Li J, Sun G (2002) J Magn Magn Mater 250:20

    Article  CAS  Google Scholar 

  31. Shichijo Y, Tsuya N, Suzuki K (1961) J Appl Phys 32(3):386s

    Article  Google Scholar 

  32. Lebourgeois R, Duguey S, Ganne J-P, Heintz J-M (2007) J Magn Magn Mater 312:328

    Article  CAS  Google Scholar 

  33. Jain GC, Das BK, Tripathi RB, Narayan Ram (1982) IEEE Trans Magn 18(2):776

    Article  Google Scholar 

  34. Rasband W (2010) ImageJ version 1.43u. National Institute of Health, USA

  35. Jankovskis J (2002) In: Scientific proceedings of RTU series 7, telecommunications and electronics, vol 2. Institute of Radioelectronics, Riga, Latvia, pp 68–77

  36. Azadmanjiri J (2008) Mater Chem Phys 109:109

    Article  CAS  Google Scholar 

  37. Rao BP, Rao KH, Sankaranarayana G, Paduraru A, Caltun OF (2005) J Optoelectron Adv Mater 7(2):697

    CAS  Google Scholar 

  38. Chikazumi S (1977) Physics of ferromagnetism. Clarendon Press, Oxford

    Google Scholar 

  39. Herrera M, Montiel H, Valenzuela R (2005) In: Proceedings of the 9th international conference on ferrites ICF9, 2004 edn, San Francisco, USA, August

  40. Herrera G (2005) Master′s Thesis, Instituto de Investigaciones en Materiales, UNAM

  41. Rao BP, Kim C-O, Kim C-G, Caltun OF (2007) J Optoelectron Adv Mater 9(4):1151

    CAS  Google Scholar 

  42. Herrera G (2010) J Appl Phys 108:103901

    Article  Google Scholar 

  43. Snoek JL (1948) Physica 14(4):207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT for the student fellowships, Grant No. 170588, 129569, and PAPPIT No. IN116903. The authors would like to thank especially to MSc. Leticia Baños, MSc Adriana Tejeda-Cruz, Dr. José Guzmán, and Dr. Gabriel Lara for their assistance in XRD and SEM characterization; and the Instituto de Investigaciones en Materiales-UNAM for the facilities to achieve this research, and the Instituto de Ciencias Nucleares-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, G., Pérez-Moreno, M.M. Microstructure dependence of the magnetic properties of sintered Ni–Zn ferrites by solid-state reaction doped with V2O3 . J Mater Sci 47, 1758–1766 (2012). https://doi.org/10.1007/s10853-011-5956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5956-z

Keywords

Navigation