Skip to main content

Vibrational and AFM studies of adsorption of glycine on DLC and silicon-doped DLC


A better understanding of protein adsorption onto surfaces of materials is required to control biocompatibility and bioactivity. Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of a-C:H and silicon-doped a-C:H thin films (Si-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of the simplest amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Raman spectroscopy and atomic force microscopy (AFM). The Raman study highlighted a slight decrease in the I D/I G ratio with increasing the silicon dopant levels. Following exposure to glycine solutions, the presence of bands at ~1735 and ~1200 cm−1 indicates that the adsorption of glycine onto the surfaces has taken place. Glycine was bound to the surfaces via both deprotonated carboxyl and protonated amino groups whilst, as the silicon content in the DLC film increased the adsorption of glycine decreased. AFM analysis showed that the surface roughness increased following exposure to glycine. These results show that at low silicon doping the adsorption of the amino acid was enhanced whilst increased doping levels led to a reduced adsorption compared to undoped DLC. Therefore, doping of DLC may provide an approach to control the protein adsorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Kawachi EY, Bertran CA, Kuboka LT (1998) Biomaterials 19:2329

    Article  CAS  Google Scholar 

  2. 2.

    Lousinian S, Logothetidis S, Laskarakis A, Gioti M (2007) Biomol Eng 24:107

    Article  CAS  Google Scholar 

  3. 3.

    Yanga P, Huang N, Leng YX, Chen JY, Fu RKY, Kwok SC, Leng Y, Chu PK (2003) Biomaterials 24:2821

    Article  Google Scholar 

  4. 4.

    Bruininka A, Schroederb A, Franczc G, Hauert R (2005) Biomaterials 26:3487

    Article  Google Scholar 

  5. 5.

    Grimanelis D, Yang S, Bohme O, Roman E, Alberdi A, Teer DG, Albella JM (2002) Diamond Relat Mater 11:176

    Article  CAS  Google Scholar 

  6. 6.

    Moore A, Tecos G, Nandasiri MI, Garratt E, Wickey KJ, Gao X, Kayani A (2009) J Phys 194:132041

    Article  Google Scholar 

  7. 7.

    Lackner JM, Waldhauser W (2010) Berg- und Hüttenmännische Monatshefte 155:528

    Article  CAS  Google Scholar 

  8. 8.

    Chen JY, Wang LP, Fu KY, Huang N, Leng Y, Leng YX, Yang P, Wang J, Wan GJ, Sun H, Tian XB, Chu PK (2002) Surf Coat Technol 156:289

    Article  CAS  Google Scholar 

  9. 9.

    Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ (2004) Surf Coat Technol 186:218

    Article  CAS  Google Scholar 

  10. 10.

    Hart A, Schmich E, Garrido JA, Hendrnando J, Cathrino SCR, Walter S, Feullner P, Kromka A, Steinmuller D, Stuitzman M (2004) Nat Mater 3:736

    Article  Google Scholar 

  11. 11.

    Matson DW, McClanahan ED, Lee SL, Windover D (2001) Surf Coat Technol 146–147:344

    Article  Google Scholar 

  12. 12.

    Matson DW, McClanahan ED, Rice JP, Lee SL, Windover D (2000) Surf Coat Technol 133–134:411

    Article  Google Scholar 

  13. 13.

    Hsiue GH, Lee SD, Chang PCT, Kao CY (1998) J Biomed Mater Res 42:134

    Article  CAS  Google Scholar 

  14. 14.

    Liu C, Zhao Q, Liu Y, Wang S, Abel EW (2008) Colloid Surf B: Biointerfaces 61:182

    Article  CAS  Google Scholar 

  15. 15.

    Zhao Q, Liu Y, Wang C, Wang S (2007) Appl Surf Sci 253:7254

    Article  CAS  Google Scholar 

  16. 16.

    Pech D, Schupp N, Steyer P, Hack T, Gachon Y, Heau C, Loir AS, Sanchez-Lopez JC (2009) Wear 266:832

    Article  CAS  Google Scholar 

  17. 17.

    Abbas GA, Papakonstantinou P, McLaughlin JA, Weijers-Dall TDM, Elliman RG, Filik J (2005) J Appl Phys 98:103505

    Article  Google Scholar 

  18. 18.

    Yokota T, Terai T, Kobayashi T, Iwaki M (2006) Nucl Instrum Meth Phys Res B 242:48

    Article  CAS  Google Scholar 

  19. 19.

    Fischer G, Cao X, Cox N, Francis M (2005) Chem Phys 313:39

    Article  CAS  Google Scholar 

  20. 20.

    Hartl A, Nowy S, Hernando J, Garrido JA, Stutzmann M (2005) IEEE 4:496

    Google Scholar 

  21. 21.

    Candel AM, van Nuland NAJ, Martin-Sierra FM, Martinez JC, Conejero-Lara F (2008) J Mol Biol 377:117

    Article  CAS  Google Scholar 

  22. 22.

    Gordon ML, Cooper G, Morin C, Araki T, Turci CC, Kaznatcheev K, Hitchcock AP (2003) J Phys Chem A 107:6144

    Article  CAS  Google Scholar 

  23. 23.

    Jia-tih L, Shukaot L (1990) J Phys D Appl Phys 23:976

    Article  Google Scholar 

  24. 24.

    Kalish R, Lifshitz Y, Nugent K, Prawer S (1999) Appl Phys Lett 74:2936

    Article  CAS  Google Scholar 

  25. 25.

    Zhang B, Li J, Sun J (2001) Mater Lett 51:219

    Article  CAS  Google Scholar 

  26. 26.

    Peng G, Jun X, Yong P, Wanyu D, Xinlu D, Chuang D (2006) Plasma Sci Technol 8:425

    Article  Google Scholar 

  27. 27.

    Klauser F, S-Nethl D, Kaindl R, Bertel E, Memme N (2010) Chem Vap Dep 16:127

    Article  CAS  Google Scholar 

  28. 28.

    Liu FX, Yao KL, Liu ZL (2007) Surf Coat Technol 201:7235

    Article  CAS  Google Scholar 

  29. 29.

    Ahmed M, Byrne JA, McLaughlin JAD (2009) J Surf Sci Nanotechnol 7:217

    Article  CAS  Google Scholar 

  30. 30.

    Bendavid A, Martin PJ, Comte C, Preston EW, Haq AJ, Ismail FSM, Singh RK (2007) Diamond Relat Mater 16:1616

    Article  CAS  Google Scholar 

  31. 31.

    Taddei P, Balducci F, Simoni R, Monti P (2005) J Mol Struct 744:507

    Article  Google Scholar 

  32. 32.

    Ong SE, Zhang S, Du H, Sun D (2007) Diamond Relat Mater 16:1628

    Article  CAS  Google Scholar 

  33. 33.

    Ong SE, Zhang S, Du H, Too HC, Aung KN (2007) Biomaterials 28:4033

    Article  CAS  Google Scholar 

  34. 34.

    Hatada R, Flege S, Baba K, Ensinger W, Kleebe H-J, Sethmann I, Lauterbach S (2010) J Appl Phys 107:083307

    Article  Google Scholar 

  35. 35.

    Okpalugo TIT, Murphy H, Ogwu AA, Abbas G, Ray SC, Maguire PD, McLaughlin J, McCullough RW (2006) J Biomed Mater Res B Appl Biomater 78:222

    CAS  Google Scholar 

  36. 36.

    Pandiarajan S, Umadevi M, Rajaram RK, Ramakrishnan V (2005) Spectrochim Acta Part A 62:630

    Article  CAS  Google Scholar 

  37. 37.

    Sajan D, Binoy J, Pradeep B, Krishna KV, Kartha VB, Joe IH, Jayakumar VS (2004) Spectrochim Acta Part A 60:173

    Article  CAS  Google Scholar 

  38. 38.

    Goryainova SV, Kolesnika EN, Boldyreva EV (2005) Physica B 357:340

    Google Scholar 

  39. 39.

    Stewart S, Fredericks PM (1999) Spectrochem Acta Part A 55:1641

    Article  Google Scholar 

  40. 40.

    Kumar TV, Joe IH, Nair CPR, Jayakumar VS (2008) J Mol Struct 877:20

    Article  Google Scholar 

  41. 41.

    Luiz FC, Oliveira ML, Hyaric MM, Berg MV, Almeida HGM (2007) Edwards J Raman Spectrosc 38:1628

    Article  Google Scholar 

  42. 42.

    Shen J, Ye Y, Hu J, Shen H, Le Z (2001) Spectrochim Acta Part A 57:551

    Article  CAS  Google Scholar 

  43. 43.

    Teixeira MC, Ciminelli VST, Dantas MSS, Diniz SF, Duarte HA (2007) J Colloid Interf Sci 315:128

    Article  CAS  Google Scholar 

  44. 44.

    Pawlukojc A, Leciejewicz J, Tomkinson J, Parker SF (2001) Spectrochim Acta Part A 57:2513

    Article  CAS  Google Scholar 

  45. 45.

    Lim PK, Tam WK, Yeung LF, Lam FM (2007) J Phys Conf Ser 61:708

    Article  CAS  Google Scholar 

  46. 46.

    Qu YQ, Wang Y, Li J, Han KL (2004) Surf Sci 569:12

    Article  CAS  Google Scholar 

  47. 47.

    Matsuda K, Yamaguchi Y, Morita N, Matsunobe T, Yoshikawa M (2007) Thin Solid Films 515:6682

    Article  CAS  Google Scholar 

  48. 48.

    He XM, Walter KC, Nastasi M (2000) J Physics Cond Matter 12:L183

    Article  CAS  Google Scholar 

  49. 49.

    Lofgren P, Krozer A, Lausma J, Kasemo B (1997) Surf Sci 370:277

    Article  Google Scholar 

Download references


The authors would like to thank all the staffs of Northern Ireland Bio-Engineering Centre (NIBEC), who assisted to achieve the Raman and AFM analysis and the University of Ulster for funding under their VCRS scheme.

Author information



Corresponding author

Correspondence to W. Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, M., Byrne, A.J., McLaughlin, J. et al. Vibrational and AFM studies of adsorption of glycine on DLC and silicon-doped DLC. J Mater Sci 47, 1729–1736 (2012).

Download citation


  • Atomic Force Microscopy
  • Wear Rate
  • Simple Amino Acid
  • Increase Silicon Content
  • Atomic Force Microscopy Height Image