Skip to main content
Log in

Optical and electrochemical properties of multilayer polyelectrolyte thin films incorporating spherical, gold colloid nanomaterials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyelectrolyte multilayer (PEM) films incorporating various types of spherical, gold nanomaterials (NMs) were investigated to assess the existence of electrochemical and/or optical signal enhancement effects directly attributable to embedded NMs and the relationship of these effects to film structure and composition. Specifically, electrostatically assembled films of cationic poly-l-lysine (PLL) and anionic poly(4-styrene sulfonate) (PSS) incorporating one of four types of spherical, gold colloid NMs were constructed on 3-(aminopropyl)trimethoxysilane (3-APTMS)-modified glass substrates for optical studies or 11-mercaptoundecanoic (MUA)-modified gold electrodes for electrochemical studies. The NMs inserted into the PEM films include citrate-stabilized gold nanoparticles, thioctic acid-stabilized gold nanoparticles (TAS-NPs), MUA-modified monolayer protected gold clusters, and hollow gold nanoshells (Au-NSs). Optical sensitivity of the NM-embedded films, in terms of absorbance, surface plasmon band shifts, and the dependence of these optical responses on film thickness, varied depending on the type of NM within the film (e.g., TAS-NPs versus Au-NSs) but exhibited no corresponding electrochemical effects in the diffusional voltammetry of a ferricyanide redox probe. While not correlated to optical responses, the increased Faradaic current achieved during voltammetry at NM-embedded PEM films suggested that electrochemical effects of NMs were less dependent on the type of NMs and were, instead, more related to their location within the film and the electrostatic interactions built into the interfacial chemistry of the films. These results should prove useful for developing strategies constructing thin films with NMs that are specifically designed for optical or electrochemical sensing, taking full advantage of the signal enhancements provided by individual types of NMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Galyean AA, Day RW, Malinowski J, Kittredge KW, Leopold MC (2009) J Colloid Interface Sci 331:532

    Article  CAS  Google Scholar 

  2. Dowdy CE, Leopold MC (2010) Thin Solid Films 519:790

    Article  CAS  Google Scholar 

  3. Sun Y, Xia Y (2002) Anal Chem 74:5297

    Article  CAS  Google Scholar 

  4. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471

    Article  CAS  Google Scholar 

  5. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Acc Chem Res 40:53

    Article  Google Scholar 

  6. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Chem Rev 108:494

    Article  CAS  Google Scholar 

  7. Loftus AF, Reighard KP, Kapourales SA, Leopold MC (2008) J Am Chem Soc 130:1649

    Article  CAS  Google Scholar 

  8. Yanez-Sedeno P, Pingarron JM (2005) Anal Bioanal Chem 382:884

    Article  CAS  Google Scholar 

  9. Zhao J, Bradbury CR, Huclova S, Potapova I, Carrara M, Fermin DJ (2005) J Phys Chem B 109:22985

    Article  CAS  Google Scholar 

  10. Jackson JB, Halas NJ (2001) J Phys Chem B 105:2743

    Article  CAS  Google Scholar 

  11. Sun Y, Mayers BT, Xia Y (2002) Nano Lett 2:481

    Article  CAS  Google Scholar 

  12. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1999) Chem Phys Lett 300:651

    Article  CAS  Google Scholar 

  13. Vargo ML, Gulka CP, Gerig JK, Manieri CM, Dattelbaum JD, Marks CB, Lawrence NT, Trawick ML, Leopold MC (2010) Langmuir 26:560

    Article  CAS  Google Scholar 

  14. Doan TT, Vargo ML, Gerig JK, Gulka CP, Trawick ML, Dattelbaum JD, Leopold MC (2010) J Colloid Interface Sci 352:50

    Article  CAS  Google Scholar 

  15. Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM (1997) Adv Mater 9:61

    Article  CAS  Google Scholar 

  16. Isaacs SR, Choo H, Ko W-, Shon Y- (2006) Chem Mater 18:107

    Article  CAS  Google Scholar 

  17. Jeon J, Panchagnula V, Pan J, Dobrynin AV (2006) Langmuir 22:4629

    Article  CAS  Google Scholar 

  18. Vaskevich A, Rubinstein I (2007) Handbook of biosensors and biochips. Wiley, Chichester

    Google Scholar 

  19. Bradbury CR, Zhao J, Fermin DJ (2008) J Phys Chem C 112:10153

    Article  CAS  Google Scholar 

  20. Zhao J, Bradbury CR, Fermin DJ (2008) J Phys Chem C 112:6832

    Article  CAS  Google Scholar 

  21. Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210–211:831

    Article  Google Scholar 

  22. Hicks JF, Young S, Murray RW (2002) Langmuir 18:2288

    Article  CAS  Google Scholar 

  23. Musick MD, Keating CD, Keefe MH, Natan MJ (1997) Chem Mater 9:1499

    Article  CAS  Google Scholar 

  24. Lyon LA, Pena DJ, Natan MJ (1999) J Phys Chem B 103:5826

    Article  CAS  Google Scholar 

  25. Musick MD, Keating CD, Lyon LA, Botsko SL, Pena DJ, Holliway WD, McEvoy TM, Richardson JN, Natan MJ (2000) Chem Mater 12:2869

    Article  CAS  Google Scholar 

  26. Lin S, Tsai Y, Chen C, Lin C, Chen C (2004) J Phys Chem B 108:2134

    Article  CAS  Google Scholar 

  27. Russell LE, Galyean AA, Notte SM, Leopold MC (2007) Langmuir 23:7466

    Article  CAS  Google Scholar 

  28. Silvert P, Herrera-Urbina R, Tekaia-Elhsissen K (1997) J Mater Chem 7:293

    Article  CAS  Google Scholar 

  29. Brust M, Walker M, Bethell D, Schriffrin DJ, Whyman RJ (1994) J Chem Soc Chem Commun 801

  30. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27

    Article  CAS  Google Scholar 

  31. Ingram RS, Hostetler MJ, Murray RW (1997) J Am Chem Soc 119:9175

    Article  CAS  Google Scholar 

  32. Collinson M, Bowden EF, Tarlov MJ (1992) Langmuir 8:1247

    Article  CAS  Google Scholar 

  33. Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148

    Article  CAS  Google Scholar 

  34. Hoogvliet JC, Dijksma M, Kamp B, van Bennekom WP (2000) Anal Chem 72:2016

    Article  CAS  Google Scholar 

  35. Russell LE, Pompano RR, Kittredge KW, Leopold MC (2007) J Mater Sci 42:7100. doi:10.1007/s10853-007-1545-6

    Article  CAS  Google Scholar 

  36. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) J Phys Chem B 108:6961

    Article  CAS  Google Scholar 

  37. Mulvaney P (1996) Langmuir 12:788

    Article  CAS  Google Scholar 

  38. Glenn JDH, Bowden EF (1996) Chem Lett 25:399

    Article  Google Scholar 

  39. Finklea HO (1996) Electroanal Chem 19:109

    CAS  Google Scholar 

  40. Shiratori SS, Rubner MF (2000) Macromolecules 33:4213

    Article  CAS  Google Scholar 

  41. Yoo D, Shiratori SS, Rubner MF (1998) Macromolecules 31:4309

    Article  CAS  Google Scholar 

  42. Zhao J, Das A, Zhang X, Schatz GC, Sligar SG, Van Duyne RP (2006) J Am Chem Soc 128:11004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Science Foundation (CHE-0847145) and the Henry Dreyfus Teacher-Scholar Awards Program for generously supporting this research. We would like to specifically recognize Natalie Nguyen, Michael Freeman, and Debbie Campbell-Rance for their help with this project. Special thanks is given to Drs. T. Leopold, R. Kanters, D. Kellogg, R. Miller, and W. Case, as well as, Russ Collins, Phil Joseph, Mandy Mallory and John Wimbush—all of whom make undergraduate research possible at the University of Richmond. A very personal thank you is given to Kelsey Caroline Leopold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Leopold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 8433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doan, T.T., Day, R.W. & Leopold, M.C. Optical and electrochemical properties of multilayer polyelectrolyte thin films incorporating spherical, gold colloid nanomaterials. J Mater Sci 47, 108–120 (2012). https://doi.org/10.1007/s10853-011-5945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5945-2

Keywords

Navigation