Skip to main content
Log in

Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X –Zn X alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of the volume fraction of long-period stacking ordered structure (LPSO) on the microstructure and mechanical properties in three extruded Mg100-3x Y2x Zn x alloys (x = 0.5, 1 and 1.5 at.%) has been studied. Two structures of LPSO phase coexist in these extruded alloys, 18R and 14H. The 18R structure transforms to 14H structure gradually in the course of the extrusion process. For the three alloys, the grain size in the vicinity of LPSO phase particles is refined because of a particle-stimulated nucleation (PSN) mechanism. The reinforcing effect of the LPSO phase is active up to 523 K. Above this temperature, grain size effect becomes important. Accordingly, MgY1Zn0,5 extruded alloy shows the Highest mechanical strength for temperatures greater than 523 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kainer KU (2000) Magnesium alloys and their applications. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  2. Pekguleryuz MO, Kaya AA (2003) Adv Eng Mat 5(12):866

    Article  CAS  Google Scholar 

  3. Tsai AP, Murakami Y, Niikura A (2000) Philos Mag Lett 80:1043

    CAS  Google Scholar 

  4. Lee JY, Kim DH, Lim HK, Kim DH (2005) Mater Lett 59:3801

    Article  CAS  Google Scholar 

  5. Luo ZP, Zhang SQ (2000) J Mater Sci Lett 19(9):813

    Article  CAS  Google Scholar 

  6. Singh A, Watanabe M, Kato A, Tsai AP (2004) Scr Mater 51(10):955

    Article  CAS  Google Scholar 

  7. Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) J Mater Res 16:1894

    Article  CAS  Google Scholar 

  8. Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Acta Mater 50:3845

    Article  CAS  Google Scholar 

  9. Matsuda M, Li S, Kawamura Y, Ikuhara Y, Nishida M (2005) Mater Sci Eng A 393:269

    Article  Google Scholar 

  10. Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H (2004) Scr Mater 51:711

    Article  CAS  Google Scholar 

  11. Nishida M, Kawamura Y, Yamamuro T (2004) Mater Sci Eng A 375–377:1217

    Google Scholar 

  12. Luo ZP, Zhang SQ (2000) J Mater Sci Lett 19:813

    Article  CAS  Google Scholar 

  13. Zhu YM, Morton AJ, Nie JF (2010) Acta Mater 58:2936

    Article  CAS  Google Scholar 

  14. Kawamura Y, Kasahara T, Izumi S, Yamasaki M (2006) Scr Mater 55:453

    Article  CAS  Google Scholar 

  15. Matsuda M, Ando S, Nishida M (2005) Mater Trans 46:361

    Article  CAS  Google Scholar 

  16. Datta A, Waghmare UV, Ramamurty U (2008) Acta Mater 56:2531

    Article  CAS  Google Scholar 

  17. Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M (2004) Mater Sci Eng A 386:447

    Google Scholar 

  18. Hagihara K, Yokotani N, Umakoshi Y (2010) Intermetallics 18:267

    Article  CAS  Google Scholar 

  19. Shao XH, Yang ZQ, Maa XL (2010) Acta Mater 58:4760

    Article  CAS  Google Scholar 

  20. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  Google Scholar 

  21. Ball EA, Prangnell PB (1994) Scr Metall Mater 31(2):111

    Article  CAS  Google Scholar 

  22. Robson JD, Henry DT, Davis B (2009) Acta Mater 57:2739

    Article  CAS  Google Scholar 

  23. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Acta Mater 59(9):3646

    Article  CAS  Google Scholar 

  24. CaRine Cristallography 3.1 Software. Divergent S.A. Centré de Transfert 60200 Compiegne France. http://carine.crystallography.pagesproorange.fr/

  25. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Acta Mater 58(19):6282

    Article  CAS  Google Scholar 

  26. Itoi T, Seimiya T, Kawamura Y, Hirohashi M (2004) Scr Mater 51(2):107

    Article  CAS  Google Scholar 

  27. Zhu YM, Wayland M, Morton AJ, Oh-ishi K, Hono K, Nie JF (2009) Scr Mater 60(11):980

    Article  CAS  Google Scholar 

  28. Yoshimoto S, Yamasaki M, Kawamura Y (2006) Mater Trans 47(4):959

    Article  CAS  Google Scholar 

  29. Oñorbe E, Garcés G, Pérez P, Cabeza S, Klaus M, Genzel C, Frutos E, Adeva P (2011) Scr Mater. doi:10.1016/j.scriptamat.2011.07.017

  30. Mishra RS, Bieler TR, Mukherjee AK (1997) Acta Mater 45(2):561

    Article  CAS  Google Scholar 

  31. Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mat Trans 42:1172

    Article  CAS  Google Scholar 

  32. Pérez P, Eddahbi M, González S, Garcés G, Adeva P (2011) Scr Mater 64(1):33

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Innovation through the MAT2006-11731 Project. E. Oñorbe also thanks the CSIC her JAE contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Oñorbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oñorbe, E., Garcés, G., Pérez, P. et al. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X –Zn X alloys. J Mater Sci 47, 1085–1093 (2012). https://doi.org/10.1007/s10853-011-5899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5899-4

Keywords

Navigation