Skip to main content

Manipulation of electrospun fibres in flight: the principle of superposition of electric fields as a control method


This study investigates the magnitude of movement of the area of deposition of electrospun fibres in response to an applied auxiliary electric field. The auxiliary field is generated by two pairs of rod electrodes positioned adjacent and parallel to the line of flight of the spun fibre. The changes in shape of the deposition area and the degree of movement of the deposition area are quantified by optical scanning and image analysis. A linear response was observed between the magnitude of movement of the deposition area and voltage difference between the auxiliary and deposition electrodes. A squeezing effect which changed the aspect ratio of the deposition area was also observed to result from the application of symmetric electrical fields. Statistical analysis showed that the deflection and squeezing responses can be thought of as independent control actions. The results from this experiment suggest this particular application of superposition of electric fields could be used as to control the flight path of an electrospun fibre.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bellamkonda RV, Kim YT, Kumar S (2006) United States Patent US20080208358, 7 Mar 2006

  2. Wu HJ, Fan JT, Chu CC, Wu J (2010) J Mater Sci Mater Med 21(12):3207. doi:10.1007/s10856-010-4164-8

    Google Scholar 

  3. Filatov Y, Budyka A, Kirichenko V (2007) Electrospinning of micro and nanofibers: fundamentals and applications in separation and filtration processes. Begell House Inc., New York

    Google Scholar 

  4. Anon (2011) Nanospinner 416. NanoFMG. Accessed 17 Jan 2011

  5. Petras D, Maly M, Pozner J, Trdlicka J, Kovac M (2010) United States Patent US20100034914, 11 Feb 2010

  6. Theron SA, Yarin AL, Zussman E, Kroll E (2005) Polymer 46 (9):2889-2899. doi:DOI 10.1016/j.polymer.2005.01.054

  7. Kim G, Cho YS, Kim WD (2006) Eur Polym J 42(9):2031. doi:10.1016/j.eurpolymj.2006.01.026

  8. Stanger J, Tucker N, Staiger MP, Kirwan K, Larsen N, Coles S, Jacobs D (2009) Solid State Phenom 151:54

    Article  CAS  Google Scholar 

  9. Halliday D, Resnick R, Walker J (2001) Fundamentals of physics, 6th edn. Wiley, Chichester

    Google Scholar 

  10. Nikitin K (2010) Accessed 7 Feb 2011

  11. Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Vancso GJ (1998) Macromol Symp 127:141

    Article  CAS  Google Scholar 

  12. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NCB (2001) Polymer 42(19):8163

    Article  CAS  Google Scholar 

  13. Melcher JR, Warren EP (1971) J Fluid Mech 47(1):127143

    Google Scholar 

  14. Bellan LM, Craighead HG (2006) J Vac Sci Technol B 24(6):3179. doi:10.1116/1.2363403

    Google Scholar 

  15. Neubert S, Eblenklamp M, Pliszka D, Sundarrajan S, Ramakrishna S, Wintermantel E (2009) In: 11th international congress of the IUPESM. Medical physics and biomedical engineering. Springer Verlag, Munich

  16. Li D, Wang Y, Xia Y (2003) Nano Lett 3(8):1167. doi:10.1021/nl0344256

    Article  CAS  Google Scholar 

  17. Liu L, Dzenis YA (2008) Nanotechnology 19:1. doi:10.1088/0957-4484/19/35/355307

    CAS  Google Scholar 

  18. Wu YQ, Carnell LA, Clark RL (2007) Polymer 48(19):5653. doi:10.1016/j.polymer.2007.07.023

    Article  CAS  Google Scholar 

  19. Carnell LS, Siochi EJ, Holloway NM, Stephens RM, Rhim C, Niklason LE, Clark RL (2008) Macromolecules 41(14):5345. doi:10.1021/Ma8000143

    Article  CAS  Google Scholar 

  20. Carnell LS, Siochi EJ, Wincheski RA, Holloway NM, Clark RL (2009) Scr Mater 60(6):359. doi:10.1016/j.scriptamat.2008.09.035

    Article  CAS  Google Scholar 

  21. Orr DE, Moore WF (2010) United States Patent US7799261, 21 Sep 2010

  22. Formhals A (1938) United States Patent US2109333, 22 Feb 1938

  23. Kim HY, Park JC (2008) United States Patent US20080122142, 29 May 2008

  24. Craighead HG, Kameoka J (2009) United States Patent US20090280300, 12 Nov 2009

  25. Hellmann C, Belardi J, Dersch R, Greiner A, Wendorff JH, Bahnmueller S (2009) Polymer 50(5):1197. doi:10.1016/j.polymer.2009.01.029

    Article  CAS  Google Scholar 

  26. Buunk N (2009) In: Tucker N (ed) Origins of the design of some secondary electrode systems for electrospinning control. Blenheim (Unpublished results)

  27. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, Hackensack

    Book  Google Scholar 

Download references


This study was variously supported by the Ministry of Higher Education of Malaysia, a Dick and Mary Earle Scholarship, a University of Canterbury Mechanical Engineering Premier Doctoral Scholarship, and by the New Zealand government through the Ministry of Science & Innovation (Contract C11X1001—Electrospun fibres for surface-active materials). Electrospinz Ltd, Blenheim kindly loaned certain pieces of equipment.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. P. Staiger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nurfaizey, A.H., Stanger, J., Tucker, N. et al. Manipulation of electrospun fibres in flight: the principle of superposition of electric fields as a control method. J Mater Sci 47, 1156–1163 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Auxiliary Electrode
  • Flight Path
  • Electrospun Fibre
  • Deposition Area
  • Voltage Difference