Skip to main content
Log in

Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple and facile method was used to synthesize polyaniline (PANI) nanocomposites with sodium montmorillonite clay (Na+-MMT) using in situ intercalative oxidative polymerization. Aniline was admixed with Na+-MMT at various concentrations, keeping the aniline monomer in the reaction mixture constant. The intercalation of PANI into the clay layers was confirmed by X-ray diffraction studies in conjugation with electron microscope techniques and FTIR spectra, particularly by the narrowing of the Si–O stretching vibration band confirmed the interaction between PANI and the clay. The employed route offers the possibility to improve the thermal properties with simultaneously controlled electrical conductivity. Thermal studies show an improved thermal stability of the nanocomposites relative to the pure PANI. Depending on the loading of the clay, the room temperature conductivity values of these nanocomposites varied between 2.0 × 10−4 and 7.4 × 10−4 S cm−1, with the maximum at 44 wt% PANI concentration. The decrease of electrical conductivity at high PANI concentration was ascribed to the decrease of the structural ordering of PANI in the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MacDiarmid AG, Epstein AJ (1994) Synth Met 65:103

    Article  CAS  Google Scholar 

  2. Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeš J, Sapurina I (2004) Polym Int 53:294

    Article  CAS  Google Scholar 

  3. Guo T, Wang LS, Evans DG, Yang WS (2010) J Phys Chem C 114:4765

    Article  CAS  Google Scholar 

  4. Chen YP, Yang G, Zhang ZH, Yang XY, Hou WH, Zhu JJ (2010) Nanoscale 2:2131

    Article  CAS  Google Scholar 

  5. Njuguna J, Pielichoski K (2004) J Mater Sci 39:4081. doi:10.1023/B:JMSC.0000033387.51728.de

    Article  CAS  Google Scholar 

  6. Reena VL, Pavithran C, Verma V, Sudha JD (2010) J Phys Chem B 114:2578

    Article  CAS  Google Scholar 

  7. Cai JJ, Zuo PJ, Cheng XQ, Xu YH, Yin GP (2010) Electrochem Commun 12:1572

    Article  CAS  Google Scholar 

  8. Li QH, Wu JH, Tang QW, Lan Z, Li PJ, Lin JM, Fan LQ (2008) Electrochem Commun 10:1299

    Article  CAS  Google Scholar 

  9. Shi S, Zhang L, Li J (2009) J Mater Sci 44:945. doi:10.1007/s10853-008-3207-8

    Article  CAS  Google Scholar 

  10. Chang K-C, Lai MC, Peng CW, Chen YT, Yeh JM, Lin CL, Yang JC (2006) Electrochim Acta 51:5645

    Article  CAS  Google Scholar 

  11. Wang J, Chan S, Carlson RR, Luo Y, Ge GL, Ries RS, Heath JR, Tseng HR (2004) Nano Lett 4:1693

    Article  CAS  Google Scholar 

  12. Deepa M, Ahmad S, Alam J, Ahmad S, Sood KN, Srivastava AK (2007) Electrochim Acta 52:7453

    Article  CAS  Google Scholar 

  13. Scully SF, Bissessur R, Dahn DC, Xie GH (2010) Solid State Ionics 181:933

    Article  CAS  Google Scholar 

  14. Li ZF, Ruckenstein E (2002) Langmuir 18:6956

    Article  CAS  Google Scholar 

  15. Kerr TA, Wu H, Nazar LF (1996) Chem Mater 8:2005

    Article  CAS  Google Scholar 

  16. Manrıquez V, Galdamez A, Ponce J, Brito I, Kasaneva J (1999) Mater Res Bull 34:123

    Article  Google Scholar 

  17. Zang D, Qin J, Yakushi K, Nakazawa Y, Chimura KI (2000) Mater Sci Eng A 286:183

    Article  Google Scholar 

  18. Bissessur R, White W, Dahn DC (2006) Mater Lett 60:248

    Article  CAS  Google Scholar 

  19. Liu Y, Chen ZM, Xie TX, Yang GS (2011) J Mater Sci 46:2700. doi:10.1007/s10853-010-5138-4

    Article  CAS  Google Scholar 

  20. Sudhakara P, Kannan P, Obireddy K, Rajulu AV (2011) J Mater Sci 46:2778. doi:10.1007/s10853-010-5152-6

    Article  CAS  Google Scholar 

  21. Chen-Yang YW, Yang HC, Li GJ, Li YK (2004) J Polym Res 11:275

    Article  CAS  Google Scholar 

  22. Maji PK, Guchhait PK, Bhowmick AK (2009) J Mater Sci 44:5861. doi:10.1007/s10853-009-3827-7

    Article  CAS  Google Scholar 

  23. Mehrotra V, Giannelis EP (1991) Solid State Commun 77:155

    Article  Google Scholar 

  24. Pielichowski K (1997) Solid State Ionics 104:123

    Article  CAS  Google Scholar 

  25. Narayanan BN, Koodathil R, Gangadharan T, Yaakob Z, Saidu FK, Chandralayam S (2010) Mater Sci Eng B 168:242

    Article  CAS  Google Scholar 

  26. Marjanovic GC, Dondur V, Milojevic M, Mojovic M, Mentus S, Radulovic A, Vukovic Z, Stejskal J (2009) Langmuir 25:3122

    Article  Google Scholar 

  27. Lee D, Char K (2002) Polym Degrad Stab 75:555

    Article  CAS  Google Scholar 

  28. Kim B-H, Jung J-H, Hong S-H, Joo J, Epstein AJ, Mizoguchi K, Kim JW, Choi HJ (2002) Macromolecules 35:1419

    Article  CAS  Google Scholar 

  29. Kim BH, Jung JH, Hong SH, Kim JW, Choi HJ, Joo J (2001) Curr Appl Phys 1:112

    Article  Google Scholar 

  30. Song DH, Lee HM, Lee KH, Choi HJ (2008) J Phys Chem Solid 69:1383

    Article  CAS  Google Scholar 

  31. Lee HM, Choi HJ (2007) Mol Cryst Liq Cryst 463:503

    CAS  Google Scholar 

  32. Chang K-C, Jang G-W, Peng C-W, Lin C-Y, Shieh J-C, Yeh J-M, Yang J-C, Li W-T (2007) Electrochim Acta 52:5191

    Article  CAS  Google Scholar 

  33. Do Nascimento GM, Padilha ACM, Constantino VRL, Temperini MLA (2008) Colloids Surf A Physicochem Eng Aspects 318:245

    Article  CAS  Google Scholar 

  34. Sun F, Pan YH, Wang J, Wang Z, Hu CP, Dong QZ (2010) Polym Compos 31:163

    CAS  Google Scholar 

  35. Do Nascimento GM, Constantino VRL, Temperini MLA (2002) Macromolecules 35:7535

    Article  CAS  Google Scholar 

  36. Wu Q, Xue Z, Qi Z, Wang F (2000) Polymer 41:2029

    Article  CAS  Google Scholar 

  37. Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T (2004) Synth Met 145:265

    Article  CAS  Google Scholar 

  38. Abbes IB, Srasra E (2010) React Funct Polym 70:11

    Article  Google Scholar 

  39. Chen KH, Yang SM (2003) Synth Met 135–136:151–152

  40. Yang SM, Chen KH (2003) Synth Met 135–136:51–52

  41. Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Synth Met 128:115

    Article  CAS  Google Scholar 

  42. Lee D, Char K, Lee SW, Park YW (2003) J Mater Chem 13:2942

    Article  CAS  Google Scholar 

  43. Celik M, Onal M (2007) J Polym Res 14:313

    Article  CAS  Google Scholar 

  44. Do Nascimento GM, Constantino VRL, Landers R, Temperini MLA (2006) Polymer 47:6131

    Article  CAS  Google Scholar 

  45. Bober P, Stejskal J, Špírková M, Trchová M, Varga M, Prokeš J (2010) Synth Met 160:2596

    Article  CAS  Google Scholar 

  46. Lee D, Lee S-H, Char K, Kim J (2000) Macromol Rapid Commun 21:1136

    Article  CAS  Google Scholar 

  47. Cole KC (2008) Macromolecules 41:834

    Article  CAS  Google Scholar 

  48. Kazim S, Ali V, Zulfequar M, Haq MM, Husain M (2007) Curr Appl Phys 7:68

    Article  Google Scholar 

  49. Yan L, Roth CB, Low PF (1996) Langmuir 12:4421

    Article  CAS  Google Scholar 

  50. Liu BYC, Tsai CJ (2003) Chem Mater 15:320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrana Kazim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazim, S., Ahmad, S., Pfleger, J. et al. Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47, 420–428 (2012). https://doi.org/10.1007/s10853-011-5815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5815-y

Keywords

Navigation